The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for cont...The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.展开更多
It is assumed that, during the design period, the waves acting on breakwaters are divided into three types: standing wave, broken wave and breaking wave,and the wave heights fit the Rayleigh distribution while the wa...It is assumed that, during the design period, the waves acting on breakwaters are divided into three types: standing wave, broken wave and breaking wave,and the wave heights fit the Rayleigh distribution while the water depths, wave periods and duration of breaking wave impact force fit normal distribution. Based on the random samples of water depths, wave heights, wave periods and duration of breaking wave impact force, the types of waves acting on breakwaters are distinguished and the time-history model of the wave force is determined. The motions of caisson breakwaters under the wave force are simulated by a dynamic numerical model and the statistic characteristics of the dynamic responses are analyzed with the Monte Carlo method. A probabilistic procedure to analyze the motion of the breakwater is developed therein. The procedure is illustrated by an example.展开更多
A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is d...A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is developed with Lagrange method and factors affecting the driving torque of two motors are analyzed. The relationship between the turning radius of the robot and the length of two links is discussed in order to optimize its mechanism design. Simulation and experimental results demonstrate the good controllability and motion performance of BHQ-1.展开更多
Motion analyses are performed with the help of stability and simulation analysis, which can provide theoretical bases for applications of an electric vehicle with two independent drive motors. Compared with one-motor ...Motion analyses are performed with the help of stability and simulation analysis, which can provide theoretical bases for applications of an electric vehicle with two independent drive motors. Compared with one-motor drive electric vehicle, the two-motor drive electric vehicle has the advantage of easy layout, simple power train and good drivability and handling characteristics. Analysis shows the method connecting armatures of two DC motors in parallel can function as mechanical differential without a steering sensor, which can simplify structure and increase reliability of the controller. Computer simulations and experiment are carried out to verify conclusions.展开更多
Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed i...Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed in this paper,which consists of parallel four-bar mechanisms.The Jacobian matrix referring to the mapping matrix from the joint velocity to the operating space velocity of the transfer robot can be solved by the differential-vector method.The mean value of the Jacobian matrix condition number in the workspace is used as the global performance index of the robot velocity and the optimization goal.The constraint condition is established based on the actual working condition.Then the linkage length optimization is carried out to decrease the length of the linkage and to increase the global performance index of velocity.The total length of robot rods is reduced by 6.12%.The global performance index of velocity is improved by 45.15%.Taking the optimized rod length as the mechanism parameter,the distribution of the motion space of the transfer robot is obtained.Finally,the results show that the proposed method for establishing the Jacobian matrix of the lower-mobility robot and for the optimization of the rods based on the velocity global performance index is accurate and effective.The workspace distribution of the robot meets the design requirements.展开更多
Through the analysis of forces acting on the waste rock in the gas solid fluidized bed, the waste rock velocity equations and displacement equations in the gas solids fluidized bed were achieved and the influential fa...Through the analysis of forces acting on the waste rock in the gas solid fluidized bed, the waste rock velocity equations and displacement equations in the gas solids fluidized bed were achieved and the influential factors of the waste rock motion in the fluidized bed were studied in this paper. The conclusions show that the primary factors influencing the waste rock motion are the waste rock grain size and the scraper velocity according to the computer simulation. This has provided the theoretical foundation both for improving the separating effect and ascertaining the length of the separating cell.展开更多
The dominant element in ballet is the search for flawless performance. The specific training required from early years may cause some changes compared to the normal human anatomy and physiology. The aim of this study ...The dominant element in ballet is the search for flawless performance. The specific training required from early years may cause some changes compared to the normal human anatomy and physiology. The aim of this study was to investigate the potential of motion analysis technologies for the evaluation of frequent changes in biomechanics of posture and dance. This paper presents an overview of the literature on the main postural compensation employed by the dancer; more specifically on the training effect of the fundamental basic techniques in ballet. It then focuses on the characteristics and potential of motion analysis technologies for the biomechanical evaluation of the dancer. The technologies investigated in this study are the optoelectronic system of gait analysis, which is one of the most advanced technologies for multifactorial motion analysis, integrated with the use of the force platform and the electromyography. These technologies enable a quantitative three-dimensional integrated multifactorial motion analysis in relation to kinematics and dynamics. Through specific systems of motion analysis, the instrumental analysis can describe objectively and with reasonable accuracy the biomechanics, the postural compensation, and the gait of the dancer.展开更多
The problem of estimation of underwater target motion parameters via bearings only is the most of ten encountered and most difficult to solve in the underwater target motion analysis.As the bearings-only target motion...The problem of estimation of underwater target motion parameters via bearings only is the most of ten encountered and most difficult to solve in the underwater target motion analysis.As the bearings-only target motion analysis is a nonlinear and multiextremal global optimization problem, so most classical estimation methods often lead the solution to convergence to one of the local extremes other than the global extreme, especially, when the noise of target bearing observation is added. In this paper we propose to use the Generalized Least Square method on the rough estimation of target motion parameters, and then use the Sequential Uniform Design method to gain a more precise estimation on the bases of rough estimation.The latter ensures that the result convergences to the global extreme. The algorithm based on the above two methods is profitable for the bearings-only target motion analysis even under conditions of large bearing observation error.展开更多
The method for Bearings-Only Target Motion Analysis (BO-TMA) based on bearing measurements fusion of two arrays is studied. The algorithms of pseudolinear processing, extended Kalman filter and maximum likelihood est...The method for Bearings-Only Target Motion Analysis (BO-TMA) based on bearing measurements fusion of two arrays is studied. The algorithms of pseudolinear processing, extended Kalman filter and maximum likelihood estimation are presented. The results of simulation experiments show that the BO-TMA method based on association of multiple arrays not only makes contributions towards eliminating maneuvers needed by bearings-only TMA based on single array,but also improves the stabilization and global convergence for varied estimation algorithms.展开更多
A motion information analysis system based on the acceleration data is proposed in this paper,consisting of filtering,feature extraction and classification.The Kalman filter is adopted to eliminate the noise.With the ...A motion information analysis system based on the acceleration data is proposed in this paper,consisting of filtering,feature extraction and classification.The Kalman filter is adopted to eliminate the noise.With the time-domain and frequency-domain analysis,acceleration features like the amplitude,the period and the acceleration region values are obtained.Furthermore,the accuracy of the motion classification is improved by using the k-nearest neighbor (KNN) algorithm.展开更多
Target motion modes have a close relationship with the relative orientation of missile-totarget in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coor...Target motion modes have a close relationship with the relative orientation of missile-totarget in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification,maneuver detection, maneuvering target tracking and interception using target signatures.展开更多
An active perception methodology is proposed to locally predict the observability condition in a reasonable horizon and suggest an observability-constrained motion direction for the next step to ensure an accurate and...An active perception methodology is proposed to locally predict the observability condition in a reasonable horizon and suggest an observability-constrained motion direction for the next step to ensure an accurate and consistent state estimation performance of vision-based navigation systems. The methodology leverages an efficient EOG-based observability analysis and a motion primitive-based path sampling technique to realize the local observability prediction with a real-time performance. The observability conditions of potential motion trajectories are evaluated,and an informed motion direction is selected to ensure the observability efficiency for the state estimation system. The proposed approach is specialized to a representative optimizationbased monocular vision-based state estimation formulation and demonstrated through simulation and experiments to evaluate the ability of estimation degradation prediction and efficacy of motion direction suggestion.展开更多
Dielectric elastomer actuators(DEAs)are promising enabling devices which can be used in a wide range of robots,artificial muscles,and microfluidics.They are characterized by high actuating strain,low cost and noise,an...Dielectric elastomer actuators(DEAs)are promising enabling devices which can be used in a wide range of robots,artificial muscles,and microfluidics.They are characterized by high actuating strain,low cost and noise,and high energy density and efficiency.There are three main challenges for enabling DEs to become actuators:(i)developing suitable and compatible electrode materials;(ii)effectively isolating the actuator electrode from the surrounding fluid;and(iii)creating a rigid frame that usually requires prestraining of the dielectric layer.The use of robotic fish in water is an important application field of biomimetic soft robots.At present,most underwater robotic fish use spiral propulsion,which has several problems,including propulsion efficiency,position controllability and aquatic organism involvement.To provide solutions,the research and development of underwater robotic fish that imitate the fins and body propulsion of fish and the use of soft underwater robotic fish are in full adoption.This project involves the research and development of a bionic soft underwater robot fish with a software driver,which can imitate swimming via the tail fin and body of a fish,especially with respect to stable swimming propulsion,to successfully develop high-performance soft underwater robot fish.In addition,to imitate the unstable swimming movements of fish,such as turning and sharp acceleration and deceleration,robot fish that use DE drivers with good flexibility and high strain have been researched and developed.展开更多
While the quadriceps muscles of human body are quite important to the daily ac-tivities of knee joints,the determination of quadriceps forces poses significant challenges since it cannot be measured in vivo.Here,a nov...While the quadriceps muscles of human body are quite important to the daily ac-tivities of knee joints,the determination of quadriceps forces poses significant challenges since it cannot be measured in vivo.Here,a novel approach is presented to obtain the forces in squat through the combination of motion photography,force transducers measuring,multi-rigid-body theory and finite element analysis.Firstly,the geometrical and angular data of human for squat process were obtained through the analysis of photographed pictures for human squat with cam-era.At the same time,force transducers were used to measure the reaction forces from feet and to determine the center of gravity for identical squat process.Next,based on the multi-rigid-body dynamics,a mathematical model for human right leg and foot was established in order to determine the quadriceps torques under different squat angles.Then,so as to determine the quadriceps forces along with varied squat angles,a simplified three-dimensional finite element model was built,including tibia,fibula,patella,patella ligament and quadriceps tendon.Finally,the contact pressure of knee joint was analyzed for the squat with the established model of knee joint involving the obtained quadriceps forces from finite element analysis.And it showed that in the 0-90 degree squat process,the peak value of contact pressure of articular cartilages and menisci is increased with the increased squat angle.This study can be referenced for further un-derstanding of the biomechanical behaviors of knee,contact pressure effects of daily activities on knee,and is significantly instructive for sports rehabilitation.展开更多
As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well underst...As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.展开更多
To improve motion graph based motion synthesis,semantic control was introduced.Hybrid motion features including both numerical and user-defined semantic relational features were extracted to encode the characteristic ...To improve motion graph based motion synthesis,semantic control was introduced.Hybrid motion features including both numerical and user-defined semantic relational features were extracted to encode the characteristic aspects contained in the character's poses of the given motion sequences.Motion templates were then automatically derived from the training motions for capturing the spatio-temporal characteristics of an entire given class of semantically related motions.The data streams of motion documents were automatically annotated with semantic motion class labels by matching their respective motion class templates.Finally,the semantic control was introduced into motion graph based human motion synthesis.Experiments of motion synthesis demonstrate the effectiveness of the approach which enables users higher level of semantically intuitive control and high quality in human motion synthesis from motion capture database.展开更多
文摘The configuration and the reference frame of the four-axis wire-electric discharge machining (WEDM) machine tool are introduced. Based on the motion analysis of the four-axis WEDM machine tool, an algorithm for controlling the four-axis motion is proposed. The algorithm is applicable to both the invariable and variable taper machining. Motion loci of the machining platform and the wire guiding head are deduced by the algorithm according to the bottom surface locus of the workpiece and the taper angle. The algorithm is used in the CNC system of the four-axis WEDM machine tool and confirmed to be effective.
基金This studyis supported bythe National Natural Science Foundation of China (Grant No.50579046) the ScienceFoundation of Tianjin Municipal Commission of Science and Technology (Grant No.043114711)
文摘It is assumed that, during the design period, the waves acting on breakwaters are divided into three types: standing wave, broken wave and breaking wave,and the wave heights fit the Rayleigh distribution while the water depths, wave periods and duration of breaking wave impact force fit normal distribution. Based on the random samples of water depths, wave heights, wave periods and duration of breaking wave impact force, the types of waves acting on breakwaters are distinguished and the time-history model of the wave force is determined. The motions of caisson breakwaters under the wave force are simulated by a dynamic numerical model and the statistic characteristics of the dynamic responses are analyzed with the Monte Carlo method. A probabilistic procedure to analyze the motion of the breakwater is developed therein. The procedure is illustrated by an example.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2003AA404190).
文摘A new spherical mobile robot BHQ-1 is designed. The spherical robot is driven by two internally mounted motors that induce the ball to move straight and turn around on a fiat surface. A dynamic model of the robot is developed with Lagrange method and factors affecting the driving torque of two motors are analyzed. The relationship between the turning radius of the robot and the length of two links is discussed in order to optimize its mechanism design. Simulation and experimental results demonstrate the good controllability and motion performance of BHQ-1.
文摘Motion analyses are performed with the help of stability and simulation analysis, which can provide theoretical bases for applications of an electric vehicle with two independent drive motors. Compared with one-motor drive electric vehicle, the two-motor drive electric vehicle has the advantage of easy layout, simple power train and good drivability and handling characteristics. Analysis shows the method connecting armatures of two DC motors in parallel can function as mechanical differential without a steering sensor, which can simplify structure and increase reliability of the controller. Computer simulations and experiment are carried out to verify conclusions.
基金supported by the National Key R&D Program of China(No.2018YFB1307900)the Natural Science Foundation of Shanxi Province(Nos.201901D211009,201901D211010)the Technology In⁃novation Foundation of Shanxi University(No.2019L 0177).
文摘Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed in this paper,which consists of parallel four-bar mechanisms.The Jacobian matrix referring to the mapping matrix from the joint velocity to the operating space velocity of the transfer robot can be solved by the differential-vector method.The mean value of the Jacobian matrix condition number in the workspace is used as the global performance index of the robot velocity and the optimization goal.The constraint condition is established based on the actual working condition.Then the linkage length optimization is carried out to decrease the length of the linkage and to increase the global performance index of velocity.The total length of robot rods is reduced by 6.12%.The global performance index of velocity is improved by 45.15%.Taking the optimized rod length as the mechanism parameter,the distribution of the motion space of the transfer robot is obtained.Finally,the results show that the proposed method for establishing the Jacobian matrix of the lower-mobility robot and for the optimization of the rods based on the velocity global performance index is accurate and effective.The workspace distribution of the robot meets the design requirements.
文摘Through the analysis of forces acting on the waste rock in the gas solid fluidized bed, the waste rock velocity equations and displacement equations in the gas solids fluidized bed were achieved and the influential factors of the waste rock motion in the fluidized bed were studied in this paper. The conclusions show that the primary factors influencing the waste rock motion are the waste rock grain size and the scraper velocity according to the computer simulation. This has provided the theoretical foundation both for improving the separating effect and ascertaining the length of the separating cell.
文摘The dominant element in ballet is the search for flawless performance. The specific training required from early years may cause some changes compared to the normal human anatomy and physiology. The aim of this study was to investigate the potential of motion analysis technologies for the evaluation of frequent changes in biomechanics of posture and dance. This paper presents an overview of the literature on the main postural compensation employed by the dancer; more specifically on the training effect of the fundamental basic techniques in ballet. It then focuses on the characteristics and potential of motion analysis technologies for the biomechanical evaluation of the dancer. The technologies investigated in this study are the optoelectronic system of gait analysis, which is one of the most advanced technologies for multifactorial motion analysis, integrated with the use of the force platform and the electromyography. These technologies enable a quantitative three-dimensional integrated multifactorial motion analysis in relation to kinematics and dynamics. Through specific systems of motion analysis, the instrumental analysis can describe objectively and with reasonable accuracy the biomechanics, the postural compensation, and the gait of the dancer.
文摘The problem of estimation of underwater target motion parameters via bearings only is the most of ten encountered and most difficult to solve in the underwater target motion analysis.As the bearings-only target motion analysis is a nonlinear and multiextremal global optimization problem, so most classical estimation methods often lead the solution to convergence to one of the local extremes other than the global extreme, especially, when the noise of target bearing observation is added. In this paper we propose to use the Generalized Least Square method on the rough estimation of target motion parameters, and then use the Sequential Uniform Design method to gain a more precise estimation on the bases of rough estimation.The latter ensures that the result convergences to the global extreme. The algorithm based on the above two methods is profitable for the bearings-only target motion analysis even under conditions of large bearing observation error.
文摘The method for Bearings-Only Target Motion Analysis (BO-TMA) based on bearing measurements fusion of two arrays is studied. The algorithms of pseudolinear processing, extended Kalman filter and maximum likelihood estimation are presented. The results of simulation experiments show that the BO-TMA method based on association of multiple arrays not only makes contributions towards eliminating maneuvers needed by bearings-only TMA based on single array,but also improves the stabilization and global convergence for varied estimation algorithms.
基金supported by the In-shoe Triaxial Pressure Measurement (Grant No.07DZ12077)and the Shanghai Innovation Project
文摘A motion information analysis system based on the acceleration data is proposed in this paper,consisting of filtering,feature extraction and classification.The Kalman filter is adopted to eliminate the noise.With the time-domain and frequency-domain analysis,acceleration features like the amplitude,the period and the acceleration region values are obtained.Furthermore,the accuracy of the motion classification is improved by using the k-nearest neighbor (KNN) algorithm.
基金supported by the Specialized Research Fund for the Doctoral Program of China Higher Education (No. 20134307110012)the National Natural Science Foundation of China (No. 61101186)
文摘Target motion modes have a close relationship with the relative orientation of missile-totarget in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification,maneuver detection, maneuvering target tracking and interception using target signatures.
文摘An active perception methodology is proposed to locally predict the observability condition in a reasonable horizon and suggest an observability-constrained motion direction for the next step to ensure an accurate and consistent state estimation performance of vision-based navigation systems. The methodology leverages an efficient EOG-based observability analysis and a motion primitive-based path sampling technique to realize the local observability prediction with a real-time performance. The observability conditions of potential motion trajectories are evaluated,and an informed motion direction is selected to ensure the observability efficiency for the state estimation system. The proposed approach is specialized to a representative optimizationbased monocular vision-based state estimation formulation and demonstrated through simulation and experiments to evaluate the ability of estimation degradation prediction and efficacy of motion direction suggestion.
基金Project supported by Joint Open Fund of Guizhou Provincial Department of Education(Grant No.[2022]439)the Academic New Seedling Cultivation and Free Exploration and Innovation of Guizhou Provincial Science and Technology Department(Grant No.[2023]11).
文摘Dielectric elastomer actuators(DEAs)are promising enabling devices which can be used in a wide range of robots,artificial muscles,and microfluidics.They are characterized by high actuating strain,low cost and noise,and high energy density and efficiency.There are three main challenges for enabling DEs to become actuators:(i)developing suitable and compatible electrode materials;(ii)effectively isolating the actuator electrode from the surrounding fluid;and(iii)creating a rigid frame that usually requires prestraining of the dielectric layer.The use of robotic fish in water is an important application field of biomimetic soft robots.At present,most underwater robotic fish use spiral propulsion,which has several problems,including propulsion efficiency,position controllability and aquatic organism involvement.To provide solutions,the research and development of underwater robotic fish that imitate the fins and body propulsion of fish and the use of soft underwater robotic fish are in full adoption.This project involves the research and development of a bionic soft underwater robot fish with a software driver,which can imitate swimming via the tail fin and body of a fish,especially with respect to stable swimming propulsion,to successfully develop high-performance soft underwater robot fish.In addition,to imitate the unstable swimming movements of fish,such as turning and sharp acceleration and deceleration,robot fish that use DE drivers with good flexibility and high strain have been researched and developed.
基金supported by the National Natural Science Foundation of China (Nos. 10702048 and 11102126)Natural Science Foundation of Shanxi (No. 2010021004-1)
文摘While the quadriceps muscles of human body are quite important to the daily ac-tivities of knee joints,the determination of quadriceps forces poses significant challenges since it cannot be measured in vivo.Here,a novel approach is presented to obtain the forces in squat through the combination of motion photography,force transducers measuring,multi-rigid-body theory and finite element analysis.Firstly,the geometrical and angular data of human for squat process were obtained through the analysis of photographed pictures for human squat with cam-era.At the same time,force transducers were used to measure the reaction forces from feet and to determine the center of gravity for identical squat process.Next,based on the multi-rigid-body dynamics,a mathematical model for human right leg and foot was established in order to determine the quadriceps torques under different squat angles.Then,so as to determine the quadriceps forces along with varied squat angles,a simplified three-dimensional finite element model was built,including tibia,fibula,patella,patella ligament and quadriceps tendon.Finally,the contact pressure of knee joint was analyzed for the squat with the established model of knee joint involving the obtained quadriceps forces from finite element analysis.And it showed that in the 0-90 degree squat process,the peak value of contact pressure of articular cartilages and menisci is increased with the increased squat angle.This study can be referenced for further un-derstanding of the biomechanical behaviors of knee,contact pressure effects of daily activities on knee,and is significantly instructive for sports rehabilitation.
基金supported by the Key Project of National Natural Science Foundation of China (No. 50635030)the National Basic Research Program ("973" Program) of China (No. 2007CB616913)+2 种基金was also supported by the China Scholarship Council (CSC)We also would like to thank Karin Jespers and Sharon Warner of the Structure and Motion Laboratory for their support of the experimental workJRH’s con-tributions were supported by research grants BB/C516844/1 and BB/F01169/1 from the BBSRC, whom we thank.
文摘As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.
基金Project(60801053) supported by the National Natural Science Foundation of ChinaProject(4082025) supported by the Beijing Natural Science Foundation,China+4 种基金Project(20070004037) supported by the Doctoral Foundation of ChinaProject(2009JBM135,2011JBM023) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(151139522) supported by the Hongguoyuan Innovative Talent Program of Beijing Jiaotong University,ChinaProject(YB20081000401) supported by the Beijing Excellent Doctoral Thesis Program,ChinaProject (2006CB303105) supported by the National Basic Research Program of China
文摘To improve motion graph based motion synthesis,semantic control was introduced.Hybrid motion features including both numerical and user-defined semantic relational features were extracted to encode the characteristic aspects contained in the character's poses of the given motion sequences.Motion templates were then automatically derived from the training motions for capturing the spatio-temporal characteristics of an entire given class of semantically related motions.The data streams of motion documents were automatically annotated with semantic motion class labels by matching their respective motion class templates.Finally,the semantic control was introduced into motion graph based human motion synthesis.Experiments of motion synthesis demonstrate the effectiveness of the approach which enables users higher level of semantically intuitive control and high quality in human motion synthesis from motion capture database.