Lime mortars have a rich history of being blended with organic additives to address weaknesses such as low setting time and hydric properties.This study specifically investigates the impact of incorporating straw and ...Lime mortars have a rich history of being blended with organic additives to address weaknesses such as low setting time and hydric properties.This study specifically investigates the impact of incorporating straw and sesame oil into lime mortar mixes,focusing on their influence on open porosity,permeability,water absorption,and durability.While previous studies explored the effects of natural fibers and fatty acid additives on lime mortars separately,this study examines their simultaneous incorporation in mortars.The results demonstrated that the simultaneous addition of sesame oil and straw decreased the water absorption values of the mortars to 77%.Furthermore,the inclusion of sesame oil resulted in a significant 30%increase in impermeability values.However,when both sesame oil and straw were added together,the increase in impermeability was less than 20%compared to the reference mortar with no additives.These findings highlights that the combined addition of sesame oil and straw has a lesser impact on the permeability values of mortars,which is a positive outcome,as maintaining optimal permeability is essential for the long-term preservation of historical substrates.The combination of straw and sesame oil enhances hydric properties without undermining the mortar’s structure and permeability.These results emphasize the sustainable nature of lime mortars in restoration projects,showcasing their compatibility with traditional masonry practices.By combining natural fibers with fatty acids,mortars demonstrate improved durability,offering a promising avenue for enhancing performance while retaining essential properties.展开更多
The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality d...The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality deterioration and posing a risk to public health.An in-situ scanning vibrating electrode technique(SVET)with micron-scale resolution,microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process.Metal pollutants release occurred at three different stages of CML failure process,and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage.Furthermore,the effects of water chemistry(Cl^(−),SO_(4)^(2−),NO_(3)−,and Ca^(2+))on corrosion scale growth and iron release activity,were investigated during the CML partial failure stage.Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion.Cl^(−)was found to damage the uncorroded metal surface,while SO_(4)^(2−)mainly dissolved the corrosion scale surface,increasing iron release.Both the oxidation of NO_(3)−and selective sedimentation of Ca2+were found to enhance the stability of corrosion scales and inhibit iron release.展开更多
Mortar元法(mortar element method,MEM)是一种新型区域分解算法,它允许将求解区域分解为多个子域,在各个区域以最适合子域特征的方式离散。在各个区域的交界面上,边界节点不要求逐点匹配,而是通过建立加权积分形式的Mortar条件使得交...Mortar元法(mortar element method,MEM)是一种新型区域分解算法,它允许将求解区域分解为多个子域,在各个区域以最适合子域特征的方式离散。在各个区域的交界面上,边界节点不要求逐点匹配,而是通过建立加权积分形式的Mortar条件使得交界面上的传递条件在分布意义上满足。Mortar有限元法(mortar finite element method,MFEM)将MEM和有限元法(finite element method,FEM)相结合,在各区域中分别使用FEM网格离散,区域的交界面上通过施加Mortar条件实现区域间的自由度连续。该文阐述了非重叠Mortar有限单元法(non-overlapping MFEM,NO-MFEM)的基本原理,介绍了NO-MFEM的程序实现过程,使用NO-MFEM对2维静磁场问题和3维静电场问题进行了计算,并与FEM模型结果进行对比,验证了该文方法的有效性。将NO-MFEM应用于电磁分析,丰富了电磁场数值计算理论,为运动涡流问题和大规模问题的分析提供了新的选择。展开更多
The article examines the physical,petrographic,mineralogical,and microstructural properties of mortar samples taken from a medieval structure located in northwestern Anatolia.Six mortar samples collected from the stru...The article examines the physical,petrographic,mineralogical,and microstructural properties of mortar samples taken from a medieval structure located in northwestern Anatolia.Six mortar samples collected from the structure were analyzed using advanced techniques such as acid loss,ignition loss,sieve analysis,physical analyses,polarizing and stereo microscope observations,SEM-EDS,XRD,and TGA.The mortars examined exhibit hydraulic properties.The hydraulic character of the mortars is mainly provided by brick dust and aggregates exhibiting pozzolanic activity.Acid loss and ignition loss analyses indicate that the binder-aggregate ratios vary between 1:1 and 1:3.The elemental and mineral composition of these mortars was analyzed using EDS and XRD,respectively.Analytical techniques revealed the presence of quartz,feldspar,muscovite,biotite,vaterite,and aragonite crystals.The results were supported by thermogravimetric analysis.This study provides important references for the formulation of compatible repair mortars to ensure the proper preservation of materials used in masonry walls of large-scale structures in similar geographical areas.It is intended that this study,based on the examination of mortar samples taken from the structure,will contribute to future research.展开更多
In order to study the effects of the contents of used mortar recycled aggregate(OMRA)and brick recycled aggregate(BRA)on the deformation properties of recycled aggregate concrete(RAC),under uniaxial compression condit...In order to study the effects of the contents of used mortar recycled aggregate(OMRA)and brick recycled aggregate(BRA)on the deformation properties of recycled aggregate concrete(RAC),under uniaxial compression conditions,The RAC of OMRA(0%,5%,10%,and 15%)and BRA(0%,3%,6%,9%,12%,and 15%)were studied.The experimental results show that,under uniaxial compression,the interfacial relationships of RAC containing OMRA and BRA between different materials are more complex,and the failure mechanism is also more complex.The content of OMRA and BRA had significant influence on the deformation behavior of RAC.When the content of OMRA and BRA is high,it is difficult for existing formulas and models to accurately represent the actual value.In this study,the influence of OMRA and BRA content is taken into account,and the existing formulas for calculating concrete deformation are modified,so that these formulas can more accurately calculate the elastic modulus,peak strain and ultimate strain of recycled concrete.The stress-strain formula of Guo concrete fits the stress-strain curve of concrete very well.We modified the formula on the basis of Guo formula to make the formula more suitable for the stress-strain curve of recycled concrete containing old mortar and brick,and the theoretical model proposed has better fitting accuracy.The study provides a valuable reference for nonlinear analysis of recycled aggregate concrete structures under different proportions of OMRA and BRA.展开更多
Incorporating microencapsulated phase change materials (MPCM) into mortar enhances building thermal energy storage for energy savings but severely degrades compressive strength by replacing sand and creating pores. Th...Incorporating microencapsulated phase change materials (MPCM) into mortar enhances building thermal energy storage for energy savings but severely degrades compressive strength by replacing sand and creating pores. This study innovatively addresses this critical limitation by introducing nano-silicon (NS) as a modifier to fill pores and promote hydration in MPCM mortar. Twenty-five mixes with varying NS content from 0 to 4 weight percent and different MPCM contents were comprehensively tested for flowability, compressive strength, thermal conductivity, thermal energy storage via Differential Scanning Calorimetry, and microstructure via Scanning Electron Microscopy. Key quantitative results showed MPCM reduced mortar consistency while NS had minimal effect. Crucially, although MPCM decreased compressive strength, NS addition significantly counteracted this loss. Increasing NS content from 0 percent to 4 percent enhanced compressive strength by 12.53%, 14.21%, 25.49%, 21.70%, and 40.70%, respectively, across the tested MPCM levels. Thermal conductivity was primarily reduced by higher MPCM content leading to lower conductivity, with NS showing negligible and inconsistent influence. The phase change temperature of the modified mortar matched that of pure MPCM, although its relative latent heat slightly decreased. This work conclusively demonstrates the novel and effective use of nano-silicon, achieving up to a 40.7 percent strength recovery in MPCM mortar while preserving its essential phase change temperature and thermal conductivity reduction capability. This strategy presents a feasible pathway for developing high-performance, energy-efficient building composites.展开更多
In order to study the axial compression characteristics of brick masonry historical buildings, and to better protect and repair traditional mortar-brick masonry historical buildings, axial compression tests were carri...In order to study the axial compression characteristics of brick masonry historical buildings, and to better protect and repair traditional mortar-brick masonry historical buildings, axial compression tests were carried out on three kinds of restored mortar (pure mud mortar, pure mortar, and mud mortar) brick masonry with restored mortar brick masonry as the object of study. The damage modes, axial compression chemical indexes (compressive strength and elastic modulus), load-displacement curves and stress-strain curves of the three kinds of restored mortar brick masonry were obtained. The experimental results show that the compressive strength of mud mortar brick masonry of 1.676 MPa is better than that of pure mud 1.530 MPa and pure mortar 1.471 MPa brick masonry, which is due to the difference in the bond effect between the restored mortar material and the brick block. According to the test results, the compressive strength formula of the restored mortar brick masonry was modified, and the reasons for the difference between the experimental value of the modulus of elasticity of the restored mortar brick masonry and that of the traditional formula and the measured value were compared and analyzed by a factor of 6.73–7.1. Referring to the axial-pressure ontological relationship of the conventional brick masonry, the 4-parameter segmental function expression was proposed for the characterization of the stress-strain relationship of the restored mortar brick masonry with the use of the stress-strain normalization process. The research results provide theoretical support for the inheritance and development of traditional mortar brick masonry historical architecture.展开更多
Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modu...Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM.展开更多
In this paper,the effects of four different mineral ginseng materials on the mechanical properties of mortar were studied,and the results showed that high territory,fly ash,and silica fume had an inhibitory effect on ...In this paper,the effects of four different mineral ginseng materials on the mechanical properties of mortar were studied,and the results showed that high territory,fly ash,and silica fume had an inhibitory effect on the drying shrinkage of mortar,and mineral powder increased the drying shrinkage of mortar.The high territory in the mineral admixture has the best effect on the inhibition of mortar drying shrinkage.The compressive strength and flexural strength of the mortar can be improved by adding a certain amount of mineral admixture,which increases the compressive strength by about 20%-40%and the flexural strength by about 20%-30%compared with the control group,and the improvement effect difference between different components is not large.展开更多
This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thi...This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thicknesses and air gaps,was experimentally investigated under single and repeated impacts of 7.62×51 mm bullets fired from a distance of 50 m.The impact events were recorded using a high-speed camera at 40000 fps.Panel performance was assessed in terms of failure modes,kinetic energy absorption,spalling diameter,and percentage of back-face damage area,and weight loss.Results showed that panel configuration significantly influenced performance.Panel P10,with 70 mm SFRM thickness and 20 mm air gaps,provided the highest resistance,dissipating 5223 J of kinetic energy and preventing back-face damage.In contrast,P7,which absorbed 4476 J,presented a back damage area percentage of 8.93%after three impacts.Weight loss analysis further confirmed durability improvements,with P10 showing only 1.53%cumulative loss compared to 3.26%in P7.The inclusion of wider air gaps enhanced energy dissipation and reduced damage.Comparison between single and repeated impacts demonstrated the sustained resistance of high-performance panels,with P10 maintaining minimal degradation across three consecutive impacts.These findings highlight the potential of multi-layer SFRM panels to enhance ballistic resistance,making them suitable for military,security,and civilian protective applications requiring long-term durability.展开更多
In this experimental work, three groups of cement-slag mortars namely OPC, OPC-slag, and slag mortars were made. All were cured in both water and air under room temperature. Strength development was studied up to 90 d...In this experimental work, three groups of cement-slag mortars namely OPC, OPC-slag, and slag mortars were made. All were cured in both water and air under room temperature. Strength development was studied up to 90 days. The mortars were prepared using 0%, 50%, and 100% replacement with slag. The sensitivity for all groups was obtained against the curing regime with the highest being attributed to the slag mortars. The highest and lowest strengths at early ages were attributed to OPC and slag mortars when both were cured in water. The highest and lowest strengths were attributed to OPC-slag and slag mortars at later ages, respectively. The highest strengths for OPC-slag, OPC, and slag mortars were as 72.0, 64.0, and 21.5 MPa at 90 days when the specimens cured in water, respectively. Strength loss was observed for all groups at later ages when cured in air under room temperature. The maximum and minimum, of about 8.0% and 1.3%, occurred at 56 and 90 days for slag and OPC-slag mortars, respectively.展开更多
采用Mortar有限单元法(mortar finite element method,MFEM)能够得到正定、对称的系数矩阵,而且刚度矩阵是分块对称的,这种特点适合于并行迭代求解。阐述了非重叠Mortar有限单元法(non-overlapping MFEM,NO-MFEM)的基本原理,介绍了适合...采用Mortar有限单元法(mortar finite element method,MFEM)能够得到正定、对称的系数矩阵,而且刚度矩阵是分块对称的,这种特点适合于并行迭代求解。阐述了非重叠Mortar有限单元法(non-overlapping MFEM,NO-MFEM)的基本原理,介绍了适合于NO-MFEM并行计算的区域分解策略以及并行求解的基本流程。针对简单2维静电场问题,使用NO-MFEM进行了并行计算,并与理论值和串行计算结果进行对比,验证了所提方法的有效性。同时,对于非协调网格造成的计算误差进行了分析。NO-MFEM法的并行计算为工程应用中优化设计问题的区域分解和并行求解提供了一种新的选择。展开更多
In order to improve the brittleness of high-strength cement mortar,calcium carbonate(CaCO3) whiskers are incorporated to strengthen and toughen the high-strength cement mortar.The compressive strength,flexural stren...In order to improve the brittleness of high-strength cement mortar,calcium carbonate(CaCO3) whiskers are incorporated to strengthen and toughen the high-strength cement mortar.The compressive strength,flexural strength,split tensile strength and work of fracture are measured.Microstructures and micromechanical behaviors are investigated using scanning electron microscopy.The strengthening and toughening mechanisms and the efficiency of whisker-reinforced high-strength cement mortar are discussed.The results show that the addition of CaCO3 whiskers brings positive effects on the high-strength cement mortar.The strengthening and toughening mechanisms are whisker-cement coalition debonding,whisker peeling,whisker impact breakage and whisker bridging.Crack deflection is one efficient mechanism,but it is hard to be achieved in high-strength cement mortar.And the interfacial bonding strength between whiskers and the cement mortar matrix should be appropriately weak to introduce more crack deflection mechanisms to strengthen and toughen the cement mortar efficiently.展开更多
The creep performance of basalt fibre(BF)reinforced in asphalt mortar under uniaxial compressive loadings is investigated. The samples of basalt fibre asphalt mortar(BFAM) with different BF mass fractions(0. 1%,0...The creep performance of basalt fibre(BF)reinforced in asphalt mortar under uniaxial compressive loadings is investigated. The samples of basalt fibre asphalt mortar(BFAM) with different BF mass fractions(0. 1%,0. 2%, and 0. 5%) and without BF in asphalt mixture are prepared, and then submitted for the compressive strength test and corresponding creep test at a high in-service temperature.Besides, numerical simulations in finite element ABAQUS software were conducted to model the compressive creep test of mortar materials, where the internal structure of the fibre mortar was assumed to be a two-component composite material model such as fibre and mortar matrix. Finally, the influence factors of rheological behaviors of BFAM are further analyzed. Results indicate that compared to the control sample, the compressive strength of BFAM samples has a significant increase, and the creep and residual deformation are decreased. However, it also shows that the excessive fibre, i.e. with the BF content of 0. 5%, is unfavorable to the high-temperature stability of the mortar. Based on the analysis results, the prediction equations of parameters of the Burgers constitutive model for BFAM are proposed by considering the fibre factors.展开更多
文摘Lime mortars have a rich history of being blended with organic additives to address weaknesses such as low setting time and hydric properties.This study specifically investigates the impact of incorporating straw and sesame oil into lime mortar mixes,focusing on their influence on open porosity,permeability,water absorption,and durability.While previous studies explored the effects of natural fibers and fatty acid additives on lime mortars separately,this study examines their simultaneous incorporation in mortars.The results demonstrated that the simultaneous addition of sesame oil and straw decreased the water absorption values of the mortars to 77%.Furthermore,the inclusion of sesame oil resulted in a significant 30%increase in impermeability values.However,when both sesame oil and straw were added together,the increase in impermeability was less than 20%compared to the reference mortar with no additives.These findings highlights that the combined addition of sesame oil and straw has a lesser impact on the permeability values of mortars,which is a positive outcome,as maintaining optimal permeability is essential for the long-term preservation of historical substrates.The combination of straw and sesame oil enhances hydric properties without undermining the mortar’s structure and permeability.These results emphasize the sustainable nature of lime mortars in restoration projects,showcasing their compatibility with traditional masonry practices.By combining natural fibers with fatty acids,mortars demonstrate improved durability,offering a promising avenue for enhancing performance while retaining essential properties.
基金supported by the National Natural Science Foundation of China(Nos.51808158,52170101,and 52200116)Tianjin Natural Science Foundation(No.23JCYBJC00640).
文摘The electrochemical corrosion of ductile pipes(DPs)in drinking water distribution systems(DWDS)has a crucial impact on cement-mortar lining(CML)failure and metal release,potentially leading to drinking water quality deterioration and posing a risk to public health.An in-situ scanning vibrating electrode technique(SVET)with micron-scale resolution,microscopic scale detection and water quality analysis were used to investigate the corrosion behavior and metal release from DPs throughout the whole CML failure process.Metal pollutants release occurred at three different stages of CML failure process,and there are potential risks of water quality deterioration exceeding the maximum allowable levels set by national standards in the partial failure stage and lining peeling stage.Furthermore,the effects of water chemistry(Cl^(−),SO_(4)^(2−),NO_(3)−,and Ca^(2+))on corrosion scale growth and iron release activity,were investigated during the CML partial failure stage.Results showed that the CML failure process in DPs was accelerated by the autocatalysis of localized corrosion.Cl^(−)was found to damage the uncorroded metal surface,while SO_(4)^(2−)mainly dissolved the corrosion scale surface,increasing iron release.Both the oxidation of NO_(3)−and selective sedimentation of Ca2+were found to enhance the stability of corrosion scales and inhibit iron release.
文摘Mortar元法(mortar element method,MEM)是一种新型区域分解算法,它允许将求解区域分解为多个子域,在各个区域以最适合子域特征的方式离散。在各个区域的交界面上,边界节点不要求逐点匹配,而是通过建立加权积分形式的Mortar条件使得交界面上的传递条件在分布意义上满足。Mortar有限元法(mortar finite element method,MFEM)将MEM和有限元法(finite element method,FEM)相结合,在各区域中分别使用FEM网格离散,区域的交界面上通过施加Mortar条件实现区域间的自由度连续。该文阐述了非重叠Mortar有限单元法(non-overlapping MFEM,NO-MFEM)的基本原理,介绍了NO-MFEM的程序实现过程,使用NO-MFEM对2维静磁场问题和3维静电场问题进行了计算,并与FEM模型结果进行对比,验证了该文方法的有效性。将NO-MFEM应用于电磁分析,丰富了电磁场数值计算理论,为运动涡流问题和大规模问题的分析提供了新的选择。
文摘The article examines the physical,petrographic,mineralogical,and microstructural properties of mortar samples taken from a medieval structure located in northwestern Anatolia.Six mortar samples collected from the structure were analyzed using advanced techniques such as acid loss,ignition loss,sieve analysis,physical analyses,polarizing and stereo microscope observations,SEM-EDS,XRD,and TGA.The mortars examined exhibit hydraulic properties.The hydraulic character of the mortars is mainly provided by brick dust and aggregates exhibiting pozzolanic activity.Acid loss and ignition loss analyses indicate that the binder-aggregate ratios vary between 1:1 and 1:3.The elemental and mineral composition of these mortars was analyzed using EDS and XRD,respectively.Analytical techniques revealed the presence of quartz,feldspar,muscovite,biotite,vaterite,and aragonite crystals.The results were supported by thermogravimetric analysis.This study provides important references for the formulation of compatible repair mortars to ensure the proper preservation of materials used in masonry walls of large-scale structures in similar geographical areas.It is intended that this study,based on the examination of mortar samples taken from the structure,will contribute to future research.
基金Funded by the Project of National Key Research and Development Program of China(No.2019YFC1906202)。
文摘In order to study the effects of the contents of used mortar recycled aggregate(OMRA)and brick recycled aggregate(BRA)on the deformation properties of recycled aggregate concrete(RAC),under uniaxial compression conditions,The RAC of OMRA(0%,5%,10%,and 15%)and BRA(0%,3%,6%,9%,12%,and 15%)were studied.The experimental results show that,under uniaxial compression,the interfacial relationships of RAC containing OMRA and BRA between different materials are more complex,and the failure mechanism is also more complex.The content of OMRA and BRA had significant influence on the deformation behavior of RAC.When the content of OMRA and BRA is high,it is difficult for existing formulas and models to accurately represent the actual value.In this study,the influence of OMRA and BRA content is taken into account,and the existing formulas for calculating concrete deformation are modified,so that these formulas can more accurately calculate the elastic modulus,peak strain and ultimate strain of recycled concrete.The stress-strain formula of Guo concrete fits the stress-strain curve of concrete very well.We modified the formula on the basis of Guo formula to make the formula more suitable for the stress-strain curve of recycled concrete containing old mortar and brick,and the theoretical model proposed has better fitting accuracy.The study provides a valuable reference for nonlinear analysis of recycled aggregate concrete structures under different proportions of OMRA and BRA.
基金supported by the Fujian Provincial Department of Science and Technology Industrial University Industry.Education Cooperation Project(2022H6009)the Fujian Province Key Project of Science and Technology Innovation(2022G02025).
文摘Incorporating microencapsulated phase change materials (MPCM) into mortar enhances building thermal energy storage for energy savings but severely degrades compressive strength by replacing sand and creating pores. This study innovatively addresses this critical limitation by introducing nano-silicon (NS) as a modifier to fill pores and promote hydration in MPCM mortar. Twenty-five mixes with varying NS content from 0 to 4 weight percent and different MPCM contents were comprehensively tested for flowability, compressive strength, thermal conductivity, thermal energy storage via Differential Scanning Calorimetry, and microstructure via Scanning Electron Microscopy. Key quantitative results showed MPCM reduced mortar consistency while NS had minimal effect. Crucially, although MPCM decreased compressive strength, NS addition significantly counteracted this loss. Increasing NS content from 0 percent to 4 percent enhanced compressive strength by 12.53%, 14.21%, 25.49%, 21.70%, and 40.70%, respectively, across the tested MPCM levels. Thermal conductivity was primarily reduced by higher MPCM content leading to lower conductivity, with NS showing negligible and inconsistent influence. The phase change temperature of the modified mortar matched that of pure MPCM, although its relative latent heat slightly decreased. This work conclusively demonstrates the novel and effective use of nano-silicon, achieving up to a 40.7 percent strength recovery in MPCM mortar while preserving its essential phase change temperature and thermal conductivity reduction capability. This strategy presents a feasible pathway for developing high-performance, energy-efficient building composites.
基金funded by National Key R&D Program of China(No.2022YFC3803500).
文摘In order to study the axial compression characteristics of brick masonry historical buildings, and to better protect and repair traditional mortar-brick masonry historical buildings, axial compression tests were carried out on three kinds of restored mortar (pure mud mortar, pure mortar, and mud mortar) brick masonry with restored mortar brick masonry as the object of study. The damage modes, axial compression chemical indexes (compressive strength and elastic modulus), load-displacement curves and stress-strain curves of the three kinds of restored mortar brick masonry were obtained. The experimental results show that the compressive strength of mud mortar brick masonry of 1.676 MPa is better than that of pure mud 1.530 MPa and pure mortar 1.471 MPa brick masonry, which is due to the difference in the bond effect between the restored mortar material and the brick block. According to the test results, the compressive strength formula of the restored mortar brick masonry was modified, and the reasons for the difference between the experimental value of the modulus of elasticity of the restored mortar brick masonry and that of the traditional formula and the measured value were compared and analyzed by a factor of 6.73–7.1. Referring to the axial-pressure ontological relationship of the conventional brick masonry, the 4-parameter segmental function expression was proposed for the characterization of the stress-strain relationship of the restored mortar brick masonry with the use of the stress-strain normalization process. The research results provide theoretical support for the inheritance and development of traditional mortar brick masonry historical architecture.
基金financial support from the Chilean National Agency for Research and Development(ANID),National Doctorate No.21212028financial support from ANID,FONDECYT Regular Research Project No.1221793.
文摘Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM.
基金Hunan Provincial Department of Water Resources:Research on Formula Optimization and Performance Evaluation System of Ecological Concrete for River Water Quality Purification Based on the Dual Carbon Goal(Project No.:XSKJ2024064-44)。
文摘In this paper,the effects of four different mineral ginseng materials on the mechanical properties of mortar were studied,and the results showed that high territory,fly ash,and silica fume had an inhibitory effect on the drying shrinkage of mortar,and mineral powder increased the drying shrinkage of mortar.The high territory in the mineral admixture has the best effect on the inhibition of mortar drying shrinkage.The compressive strength and flexural strength of the mortar can be improved by adding a certain amount of mineral admixture,which increases the compressive strength by about 20%-40%and the flexural strength by about 20%-30%compared with the control group,and the improvement effect difference between different components is not large.
基金funded by Thailand Research Fund under Research and Researchers for Industries (contract no. MSD62I0063)
文摘This research addresses the growing demand for high-performance protective materials against high-velocity projectile impacts.The performance of multi-layered steel fiber-reinforced mortar(SFRM)panels with varying thicknesses and air gaps,was experimentally investigated under single and repeated impacts of 7.62×51 mm bullets fired from a distance of 50 m.The impact events were recorded using a high-speed camera at 40000 fps.Panel performance was assessed in terms of failure modes,kinetic energy absorption,spalling diameter,and percentage of back-face damage area,and weight loss.Results showed that panel configuration significantly influenced performance.Panel P10,with 70 mm SFRM thickness and 20 mm air gaps,provided the highest resistance,dissipating 5223 J of kinetic energy and preventing back-face damage.In contrast,P7,which absorbed 4476 J,presented a back damage area percentage of 8.93%after three impacts.Weight loss analysis further confirmed durability improvements,with P10 showing only 1.53%cumulative loss compared to 3.26%in P7.The inclusion of wider air gaps enhanced energy dissipation and reduced damage.Comparison between single and repeated impacts demonstrated the sustained resistance of high-performance panels,with P10 maintaining minimal degradation across three consecutive impacts.These findings highlight the potential of multi-layer SFRM panels to enhance ballistic resistance,making them suitable for military,security,and civilian protective applications requiring long-term durability.
文摘In this experimental work, three groups of cement-slag mortars namely OPC, OPC-slag, and slag mortars were made. All were cured in both water and air under room temperature. Strength development was studied up to 90 days. The mortars were prepared using 0%, 50%, and 100% replacement with slag. The sensitivity for all groups was obtained against the curing regime with the highest being attributed to the slag mortars. The highest and lowest strengths at early ages were attributed to OPC and slag mortars when both were cured in water. The highest and lowest strengths were attributed to OPC-slag and slag mortars at later ages, respectively. The highest strengths for OPC-slag, OPC, and slag mortars were as 72.0, 64.0, and 21.5 MPa at 90 days when the specimens cured in water, respectively. Strength loss was observed for all groups at later ages when cured in air under room temperature. The maximum and minimum, of about 8.0% and 1.3%, occurred at 56 and 90 days for slag and OPC-slag mortars, respectively.
文摘采用Mortar有限单元法(mortar finite element method,MFEM)能够得到正定、对称的系数矩阵,而且刚度矩阵是分块对称的,这种特点适合于并行迭代求解。阐述了非重叠Mortar有限单元法(non-overlapping MFEM,NO-MFEM)的基本原理,介绍了适合于NO-MFEM并行计算的区域分解策略以及并行求解的基本流程。针对简单2维静电场问题,使用NO-MFEM进行了并行计算,并与理论值和串行计算结果进行对比,验证了所提方法的有效性。同时,对于非协调网格造成的计算误差进行了分析。NO-MFEM法的并行计算为工程应用中优化设计问题的区域分解和并行求解提供了一种新的选择。
基金The National Natural Science Foundation of China (No.51102035)
文摘In order to improve the brittleness of high-strength cement mortar,calcium carbonate(CaCO3) whiskers are incorporated to strengthen and toughen the high-strength cement mortar.The compressive strength,flexural strength,split tensile strength and work of fracture are measured.Microstructures and micromechanical behaviors are investigated using scanning electron microscopy.The strengthening and toughening mechanisms and the efficiency of whisker-reinforced high-strength cement mortar are discussed.The results show that the addition of CaCO3 whiskers brings positive effects on the high-strength cement mortar.The strengthening and toughening mechanisms are whisker-cement coalition debonding,whisker peeling,whisker impact breakage and whisker bridging.Crack deflection is one efficient mechanism,but it is hard to be achieved in high-strength cement mortar.And the interfacial bonding strength between whiskers and the cement mortar matrix should be appropriately weak to introduce more crack deflection mechanisms to strengthen and toughen the cement mortar efficiently.
基金The National Natural Science Foundation of China(No.51108082)
文摘The creep performance of basalt fibre(BF)reinforced in asphalt mortar under uniaxial compressive loadings is investigated. The samples of basalt fibre asphalt mortar(BFAM) with different BF mass fractions(0. 1%,0. 2%, and 0. 5%) and without BF in asphalt mixture are prepared, and then submitted for the compressive strength test and corresponding creep test at a high in-service temperature.Besides, numerical simulations in finite element ABAQUS software were conducted to model the compressive creep test of mortar materials, where the internal structure of the fibre mortar was assumed to be a two-component composite material model such as fibre and mortar matrix. Finally, the influence factors of rheological behaviors of BFAM are further analyzed. Results indicate that compared to the control sample, the compressive strength of BFAM samples has a significant increase, and the creep and residual deformation are decreased. However, it also shows that the excessive fibre, i.e. with the BF content of 0. 5%, is unfavorable to the high-temperature stability of the mortar. Based on the analysis results, the prediction equations of parameters of the Burgers constitutive model for BFAM are proposed by considering the fibre factors.