期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Smooth Boundary Topology Optimization-A New Framework for Movable Morphable Smooth Boundary Method
1
作者 Jiazheng Du Ju Chen +2 位作者 Hongling Ye Bing Lin Zhichao Guo 《Computer Modeling in Engineering & Sciences》 2025年第7期791-809,共19页
The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through... The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance. 展开更多
关键词 Movable morphable Smooth Boundary continuum structure topology optimization jagged boundary ICM method
在线阅读 下载PDF
Mesh representation matters:investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models
2
作者 Robert KOSK Richard SOUTHERN +3 位作者 Lihua YOU Shaojun BIAN Willem KOKKE Greg MAGUIRE 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期383-395,共13页
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys... Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods. 展开更多
关键词 Shape modelling Deep 3D morphable models Representation learning Feature engineering Perceptual metrics
在线阅读 下载PDF
An Optimization Approach for Stiffener Layout of Composite Stiffened Panels Based on Moving Morphable Components(MMCs) 被引量:7
3
作者 Zhi Sun Ronghua Cui +3 位作者 Tianchen Cui Chang Liu Shanshan Shi Xu Guo 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第5期650-662,共13页
An explicit topology optimization method for the stiffener layout of composite stiffened panels is proposed based on moving morphable components(MMCs).The skin and stiffeners are considered as panels with different be... An explicit topology optimization method for the stiffener layout of composite stiffened panels is proposed based on moving morphable components(MMCs).The skin and stiffeners are considered as panels with different bending stiffnesses,with the use of equivalent stiffness method.Then the location and geometric properties of composite stiffeners are determined by several MMCs to perform topology optimization,which can greatly simplify the finite element model.With the objective of maximizing structural stiffness,several typical cases with various loading and boundary conditions are selected as numerical examples to demonstrate the proposed method.The numerical examples illustrate that the proposed method can provide clear stiffener layout and explicit geometry information,which is not limited within the framework of parameter and size optimization.The mechanical properties of composite stiffened panels can be fully enhanced. 展开更多
关键词 Topology optimization Composite stiffened panels Stiffener layout Moving morphable components(MMCs)
原文传递
Topology optimization of plate structures using plate element-based moving morphable component(MMC)approach 被引量:4
4
作者 Tianchen Cui Zhi Sun +3 位作者 Chang Liu Linyuan Li Ronghua Cui Xu Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第2期412-421,共10页
A topology optimization approach for designing the layout of plate structures is proposed in this article.In this approach,structural mechanical behavior is analyzed under the framework of Kirchhoff plate theory,and s... A topology optimization approach for designing the layout of plate structures is proposed in this article.In this approach,structural mechanical behavior is analyzed under the framework of Kirchhoff plate theory,and structural topology is described explicitly by a set of moving morphable components.Compared to the existing treatments where structural topology is generally described in an implicit manner,the adopted explicit geometry/layout description has demonstrated its advantages on several aspects.Firstly,the number of design variables is reduced substantially.Secondly,the obtained optimized designs are pure black-and-white and contain no gray regions.Besides,numerical experiments show that the use of Kirchhoff plate element helps save 95-99%computational time,compared with traditional treatments where solid elements are used for finite element analysis.Moreover the accuracy of the proposed method is also validated through a comparison with the corresponding theoretical solutions.Several numerical examples are also provided to demonstrate the effectiveness of the proposed approach. 展开更多
关键词 Plate structure Topology optimization Moving morphable component(MMC) Kirchhoff plate theory
原文传递
Multiresolution Isogeometric Topology Optimisation Using Moving Morphable Voids 被引量:4
5
作者 Bingxiao Du Yong Zhao +2 位作者 Wen Yao Xuan Wang Senlin Huo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1119-1140,共22页
A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed t... A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed to obtain high-resolution designs with a relatively low computational cost.Ersatz material model based on Greville abscissae collocation scheme is utilised to represent both the Young’s modulus of the material and the density field.Two benchmark examples are tested to illustrate the effectiveness of the proposed method.Numerical results show that high-resolution designs can be obtained with relatively low computational cost,and the optimisation can be significantly improved without introducing additional DOFs. 展开更多
关键词 Isogeometric analysis(IGA) MULTIRESOLUTION moving morphable voids(MMV) topology optimisation.
在线阅读 下载PDF
Recent progress of morphable 3D mesostructures in advanced materials 被引量:2
6
作者 Haoran Fu Ke Bai +1 位作者 Yonggang Huang Yihui Zhang 《Journal of Semiconductors》 EI CAS CSCD 2020年第4期53-65,共13页
Soft robots complement the existing efforts of miniaturizing conventional,rigid robots,and have the potential to revolutionize areas such as military equipment and biomedical devices.This type of system can accomplish... Soft robots complement the existing efforts of miniaturizing conventional,rigid robots,and have the potential to revolutionize areas such as military equipment and biomedical devices.This type of system can accomplish tasks in complex and time-varying environments through geometric reconfiguration induced by diverse external stimuli,such as heat,solvent,light,electric field,magnetic field,and mechanical field.Approaches to achieve reconfigurable mesostructures are essential to the design and fabrication of soft robots.Existing studies mainly focus on four key aspects:reconfiguration mechanisms,fabrication schemes,deformation control principles,and practical applications.This review presents a detailed survey of methodologies for morphable mesostructures triggered by a wide range of stimuli,with a number of impressive examples,demonstrating high degrees of deformation complexities and varied multi-functionalities.The latest progress based on the development of new materials and unique design concepts is highlighted.An outlook on the remaining challenges and open opportunities is provided. 展开更多
关键词 morphable MESOSTRUCTURES RECONFIGURATION stimuli
在线阅读 下载PDF
Explicit Topology Optimization with Moving Morphable Component(MMC)Introduction Mechanism 被引量:3
7
作者 Tianchen Cni Zongliang Du +2 位作者 Chang Liu Zhi Sun Xu Guo 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第3期384-408,共25页
In this article,an explicit topology optimization approach with components-growing ability is proposed under the moving morphable component(MMC)framework.In this approach,the shape and topology layout of structures ar... In this article,an explicit topology optimization approach with components-growing ability is proposed under the moving morphable component(MMC)framework.In this approach,the shape and topology layout of structures are explicitly optimized by growth evolution of moving morphable components.To this end,a competition criterion is developed to optimize the structural layout from two options:adding several new components or changing the current layout.In addition,some numerical technqiues are also developed to preserve the stability of the iterative process.The present topology optimization approach allows rational generation of new components and does not require a specific distribution of components in the initial design,which is compulsory for the conventional MMC method.Three numerical examples are provided to illustrate the effectiveness of the proposed method.The optimization results indicate that the proposed method does have the potential to improve the existing MMC-based explicit topology optimization framework by eliminating the initial design dependency of optimal solutions. 展开更多
关键词 Topology optimization Moving morphable component(MMC) Component introduction mechanism
原文传递
Reliability-Based Topology Optimization of Fail-Safe Structures Using Moving Morphable Bars 被引量:2
8
作者 Xuan Wang Yuankun Shi +3 位作者 Van-Nam Hoang Zeng Meng Kai Long Yuesheng Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3173-3195,共23页
This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between ... This paper proposes an effective reliability design optimizationmethod for fail-safe topology optimization(FSTO)considering uncertainty based on the moving morphable bars method to establish the ideal balance between cost and robustness,reliability and structural safety.To this end,a performancemeasure approach(PMA)-based doubleloop optimization algorithmis developed tominimize the relative volume percentage while achieving the reliability criterion.To ensure the compliance value of the worst failure case can better approximate the quantified design requirement,a p-norm constraint approach with correction parameter is introduced.Finally,the significance of accounting for uncertainty in the fail-safe design is illustrated by contrasting the findings of the proposed reliabilitybased topology optimization(RBTO)method with those of the deterministic design method in three typical examples.Monte Carlo simulation shows that the relative error of the reliability index of the optimized structure does not exceed 3%. 展开更多
关键词 Topology optimization fail-safe design uncertainty reliability-based topology optimization moving morphable bars
在线阅读 下载PDF
Thermoelastic Structural Topology Optimization Based on Moving Morphable Components Framework 被引量:1
9
作者 Jun Yan Qi Xu +3 位作者 Zhirui Fan Zunyi Duan Hongze Du Dongling Geng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1179-1196,共18页
This study investigates structural topology optimization of thermoelastic structures considering two kinds of objectives ofminimumstructural compliance and elastic strain energy with a specified available volume const... This study investigates structural topology optimization of thermoelastic structures considering two kinds of objectives ofminimumstructural compliance and elastic strain energy with a specified available volume constraint.To explicitly express the configuration evolution in the structural topology optimization under combination of mechanical and thermal load conditions,the moving morphable components(MMC)framework is adopted.Based on the characteristics of the MMC framework,the number of design variables can be reduced substantially.Corresponding optimization formulation in the MMC topology optimization framework and numerical solution procedures are developed for several numerical examples.Different optimization results are obtained with structural compliance and elastic strain energy as objectives,respectively,for thermoelastic problems.The effectiveness of the proposed optimization formulation is validated by the numerical examples.It is revealed that for the optimization design of the thermoelastic structural strength,the objective function with the minimum structural strain energy can achieve a better performance than that from structural compliance design. 展开更多
关键词 Thermoelastic structure topology optimization moving morphable components minimum structural compliance minimum strain energy
在线阅读 下载PDF
Topology Optimization Considering Steady-State Structural Dynamic Responses via Moving Morphable Component(MMC)Approach 被引量:1
10
作者 Jialin Li Youwei Zhang +3 位作者 Zongliang Du Weisheng Zhang Xinglin Guo Xu Guo 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第6期949-960,共12页
This work presents a moving morphable component(MMC)-based framework for solving topology optimization problems considering both single-frequency and band-frequency steady-state structural dynamic responses.In this wo... This work presents a moving morphable component(MMC)-based framework for solving topology optimization problems considering both single-frequency and band-frequency steady-state structural dynamic responses.In this work,a set of morphable components are introduced as the basic building blocks for topology optimization,and the optimized structural layout can be found by optimizing the parameters characterizing the locations and geometries of the components explicitly.The degree of freedom(DOF)elimination technique is also employed to delete unnecessary DOFs at each iteration.Since the proposed approach solves the corresponding optimization problems in an explicit way,some challenging issues(e.g.,the large computational burden related to finite element analysis and sensitivity analysis,the localized eigenmodes in low material density regions,and the impact of excitation frequency on the optimization process)associated with the traditional approaches can be circumvented naturally.Numerical results show that the proposed approach is effective for solving topology optimization problems involving structural dynamic behaviors,especially when high-frequency responses are considered. 展开更多
关键词 Topology optimization Moving morphable component(MMC) Structural dynamic response Dynamic compliance
原文传递
Structural Optimization of Fiber-Reinforced Material Based on Moving Morphable Components (MMCs) 被引量:1
11
作者 Zhi Sun Ziwen Song +1 位作者 Junfu Song Haiyan Li 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第4期632-646,共15页
Fiber-reinforced composite materials have excellent specific stiffness,specific strength,and other properties,and have been increasingly widely used in the field of advanced structures.However,the design space dimensi... Fiber-reinforced composite materials have excellent specific stiffness,specific strength,and other properties,and have been increasingly widely used in the field of advanced structures.However,the design space dimensions of fiber-reinforced composite materials will expand explosively,bringing challenges to the efficient analysis and optimal design of structures.In this paper,the authors propose an explicit topology optimization method based on the moving morphable components for designing the fiber-reinforced material.We constrain the intersection area between components to guarantee the independence of each component and avoid the situation that one component is cut by other components.Adding the fiber orientation angle as a design variable,the method can optimize the structural layout and the fiber orientation angle concurrently under the given number of fiber layers and layer thickness.We use two classical examples to verify the feasibility and accuracy of the proposed method.The optimized results are in good agreement with the designs obtained by the 99-line code.The authors also popularize the proposed method to engineering structure.The results manifest that the proposed method has great value in engineering application. 展开更多
关键词 Fiber-reinforced composite materials Moving morphable components(MMCs) Topology optimization Fiber orientation angle
原文传递
A meshless moving morphable component-based method for structural topology optimization without weak material
12
作者 Linyuan Li Chang Liu +2 位作者 Zongliang Du Weisheng Zhang Xu Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第5期72-87,I0002,共17页
Traditional topology optimization methods often introduce weak artificial material to mimic voids to avoid the singularity of the global stiffness matrix and carry out topology optimization with a fixed finite element... Traditional topology optimization methods often introduce weak artificial material to mimic voids to avoid the singularity of the global stiffness matrix and carry out topology optimization with a fixed finite element(FE)mesh.This treatment,however,may not only increase the computational cost for structural analysis but also lead to unfavorable numerical instabilities,especially when large deformations and dynamic/buckling behaviors are involved.In the present work,a new meshless moving morphable component-based method(ML-MMC),which structural analysis is carried out only on the solid region occupied by components,is proposed.In this approach,the coupling of discrete components is achieved through the adaptively constructed influence domain of the meshless shape function.Therefore,the singularity problem of the stiffness matrix can be naturally avoided without introducing weak artificial material.Compared with traditional methods,the number of degrees of freedoms(DOFs)can be reduced substantially under this treatment.The effectiveness of the proposed approach is also illustrated by some representative examples. 展开更多
关键词 Topology optimization Moving morphable components(MMCs) Meshless method Influence domain Numerical integration
原文传递
Self-consistent Clustering Analysis-Based Moving Morphable Component(SMMC)Method for Multiscale Topology Optimization
13
作者 Yangfan Li Jiachen Guo +1 位作者 Hengyang Li Huihan Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第6期884-898,共15页
Current multiscale topology optimization restricts the solution space by enforcing the use of a few repetitive microstructures that are predetermined,and thus lack the ability for structural concerns like buckling str... Current multiscale topology optimization restricts the solution space by enforcing the use of a few repetitive microstructures that are predetermined,and thus lack the ability for structural concerns like buckling strength,robustness,and multi-functionality.Therefore,in this paper,a new multiscale concurrent topology optimization design,referred to as the self-consistent analysis-based moving morphable component(SMMC)method,is proposed.Compared with the conventional moving morphable component method,the proposed method seeks to optimize both material and structure simultaneously by explicitly designing both macrostructure and representative volume element(RVE)-level microstructures.Numerical examples with transducer design requirements are provided to demonstrate the superiority of the SMMC method in comparison to traditional methods.The proposed method has broad impact in areas of integrated industrial manufacturing design:to solve for the optimized macro and microstructures under the objective function and constraints,to calculate the structural response efficiently using a reduced-order model:self-consistent analysis,and to link the SMMC method to manufacturing(industrial manufacturing or additive manufacturing)based on the design requirements and application areas. 展开更多
关键词 Topology optimization Moving morphable component method Multiscale concurrent design Reduced-order model
原文传递
Explicit Topology Optimization Design of Stiffened Plate Structures Based on the Moving Morphable Component(MMC)Method
14
作者 Xudong Jiang Chang Liu +5 位作者 Shaohui Zhang Weisheng Zhang ZongliangDu Xiaoyu Zhang Huizhong Zeng Xu Guo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期809-838,共30页
This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry... This paper proposes an explicit method for topology optimization of stiffened plate structures.The present work is devoted to simultaneously optimizing stiffeners’shape,size and layout by seeking the optimal geometry parameters of a series of moving morphable components(MMC).The stiffeners with straight skeletons and the stiffeners with curved skeletons are considered to enhance the modeling and optimization capability of the current approach.All the stiffeners are represented under the Lagrangian-description framework in a fully explicit way,and the adaptive ground structure method,as well as dynamically updated plate/shell elements,is used to obtain optimized designs with more accurate analysis results.Compared with existing works,the proposed approach provides an explicit description of the structure.Thus,a stiffened plate structure with clear stiffener distribution and smooth geometric boundary can be obtained.Several numerical examples provided,including straight and curved stiffeners,hierarchical stiffeners,and a stiffened plate with a cutout,validate the effectiveness and applicability of the proposed approach. 展开更多
关键词 Topology optimization stiffened plate structures moving morphable component(MMC) straight/curved skeletons
在线阅读 下载PDF
Connected morphable components-based multiscale topology optimization 被引量:1
15
作者 Jiadong DENG Claus B.W.PEDERSEN Wei CHEN 《Frontiers of Mechanical Engineering》 SCIE CSCD 2019年第2期129-140,共12页
The advances of manufacturing techniques,such as additive manufacturing,have provided unprece-dented opportunities for producing multiscale structures with intricate latticed/cellular material microstructures to meet ... The advances of manufacturing techniques,such as additive manufacturing,have provided unprece-dented opportunities for producing multiscale structures with intricate latticed/cellular material microstructures to meet the increasing demands for parts with customized functionalities.However,there are still difficulties for the state-of-the-art multiscale topology optimization(TO)methods to achieve manufacturable multiscale designs with cellular materials,partially due to the disconnectivity issue when tiling material microstructures.This paper attempts to address the disconnectivity issue by extending component-based TO methodology to multiscale structural design.An effective linkage scheme to guarantee smooth transitions between neighboring material microstructures(unit cells)is devised and investigated.Associated with the advantages of components-based TO,the number of design variables is greatly reduced in multiscale TO design.Homogenization is employed to calculate the effective material properties of the porous materials and to correlate the macro/structural scale with the micro/material scale.Sensitivities of the objective function with respect to the geometrical parameters of each component in each material microstructure have been derived using the adjoint method.Numerical examples demonstrate that multiscale structures with well-connected material microstructures or graded/layered material microstructures are realized. 展开更多
关键词 multiscale TOPOLOGY optimization morphable COMPONENT MATERIAL MICROSTRUCTURE HOMOGENIZATION
原文传递
Sphere Face Model: A 3D morphable model with hypersphere manifold latent space using joint 2D/3D training 被引量:1
16
作者 Diqiong Jiang Yiwei Jin +4 位作者 Fang-Lue Zhang Zhe Zhu Yun Zhang Ruofeng Tong Min Tang 《Computational Visual Media》 SCIE EI CSCD 2023年第2期279-296,共18页
3D morphable models(3DMMs)are generative models for face shape and appearance.Recent works impose face recognition constraints on 3DMM shape parameters so that the face shapes of the same person remain consistent.Howe... 3D morphable models(3DMMs)are generative models for face shape and appearance.Recent works impose face recognition constraints on 3DMM shape parameters so that the face shapes of the same person remain consistent.However,the shape parameters of traditional 3DMMs satisfy the multivariate Gaussian distribution.In contrast,the identity embeddings meet the hypersphere distribution,and this conflict makes it challenging for face reconstruction models to preserve the faithfulness and the shape consistency simultaneously.In other words,recognition loss and reconstruction loss can not decrease jointly due to their conflict distribution.To address this issue,we propose the Sphere Face Model(SFM),a novel 3DMM for monocular face reconstruction,preserving both shape fidelity and identity consistency.The core of our SFM is the basis matrix which can be used to reconstruct 3D face shapes,and the basic matrix is learned by adopting a twostage training approach where 3D and 2D training data are used in the first and second stages,respectively.We design a novel loss to resolve the distribution mismatch,enforcing that the shape parameters have the hyperspherical distribution.Our model accepts 2D and 3D data for constructing the sphere face models.Extensive experiments show that SFM has high representation ability and clustering performance in its shape parameter space.Moreover,it produces highfidelity face shapes consistently in challenging conditions in monocular face reconstruction.The code will be released at https://github.com/a686432/SIR. 展开更多
关键词 facial modeling deep learning face reconstruction 3D morphable model(3DMM)
原文传递
Current Status,Challenges,and Prospects for New Types of Aerial Robots 被引量:1
17
作者 Xidong Zhou Hang Zhong +3 位作者 Hui Zhang Wei He Hean Hua Yaonan Wang 《Engineering》 SCIE EI CAS CSCD 2024年第10期19-34,共16页
New types of aerial robots(NTARs)have found extensive applications in the military,civilian contexts,scientific research,disaster management,and various other domains.Compared with traditional aerial robots,NTARs exhi... New types of aerial robots(NTARs)have found extensive applications in the military,civilian contexts,scientific research,disaster management,and various other domains.Compared with traditional aerial robots,NTARs exhibit a broader range of morphological diversity,locomotion capabilities,and enhanced operational capacities.Therefore,this study defines aerial robots with the four characteristics of morphability,biomimicry,multi-modal locomotion,and manipulator attachment as NTARs.Subsequently,this paper discusses the latest research progress in the materials and manufacturing technology,actuation technology,and perception and control technology of NTARs.Thereafter,the research status of NTAR systems is summarized,focusing on the frontier development and application cases of flapping-wing microair vehicles,perching aerial robots,amphibious robots,and operational aerial robots.Finally,the main challenges presented by NTARs in terms of energy,materials,and perception are analyzed,and the future development trends of NTARs are summarized in terms of size and endurance,mechatronics,and complex scenarios,providing a reference direction for the follow-up exploration of NTARs. 展开更多
关键词 Aerial robot Morphability Biomimicry PERCH AMPHIBIOUS
在线阅读 下载PDF
Hybrid algorithms for handling the numerical noise in topology optimization 被引量:2
18
作者 Pooya Rostami Javad Marzbanrad 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第2期536-554,共19页
This paper presents new hybrid methods for the identification of optimal topologies by combining the teaching-learning based optimization(TLBO)and the method of moving asymptotes(MMA).The topology optimization problem... This paper presents new hybrid methods for the identification of optimal topologies by combining the teaching-learning based optimization(TLBO)and the method of moving asymptotes(MMA).The topology optimization problem is parameterizing with a low dimensional explicit method called moving morphable components(MMC),to make the use of evolutionary algorithms more efficient.Gradient-based solvers have good performance in solving large-scale topology optimization problems.However,in unconventional cases same as crashworthiness design in which there is numerical noise in the gradient information,the uses of these algorithms are unsuitable.The standard evolutionary algorithms can solve such problems since they don’t need gradient information.However,they have a high computational cost.This paper is based upon the idea of combining metaheuristics with mathematical programming to handle the probable noises and have faster convergence speed.Due to the ease of computations,the compliance minimization problem is considered as the case study and the artificial noise is added in gradient information. 展开更多
关键词 Topology optimization Teaching-learning based optimization Method of moving asymptotes Moving morphable components
原文传递
Explicit Isogeometric Topology Optimization Method with Suitably Graded Truncated Hierarchical B-Spline 被引量:1
19
作者 Haoran Zhu Xinhao Gao +3 位作者 Aodi Yang Shuting Wang Xianda Xie Tifan Xiong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1435-1456,共22页
This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as th... This work puts forward an explicit isogeometric topology optimization(ITO)method using moving morphable components(MMC),which takes the suitably graded truncated hierarchical B-Spline based isogeometric analysis as the solver of physical unknown(SGTHB-ITO-MMC).By applying properly basis graded constraints to the hierarchical mesh of truncated hierarchical B-splines(THB),the convergence and robustness of the SGTHB-ITOMMC are simultaneously improved and the tiny holes occurred in optimized structure are eliminated,due to the improved accuracy around the explicit structural boundaries.Moreover,an efficient computational method is developed for the topological description functions(TDF)ofMMC under the admissible hierarchicalmesh,which consists of reducing the dimensionality strategy for design space and the locally computing strategy for hierarchical mesh.We apply the above SGTHB-ITO-MMC with improved efficiency to a series of 2D and 3Dcompliance design problems.The numerical results show that the proposed SGTHB-ITO-MMC method outperforms the traditional THB-ITO-MMCmethod in terms of convergence rate and efficiency.Therefore,the proposed SGTHB-ITO-MMC is an effective way of solving topology optimization(TO)problems. 展开更多
关键词 Isogeometric topology optimization moving morphable components truncated hierarchical B-spline suitably graded hierarchical mesh
在线阅读 下载PDF
An Effective Surface Modeling Method for Car Styling from a Side-View Image 被引量:1
20
作者 LI Bao-jun ZHANG Xue-fang +1 位作者 LV Zhang-quan QI Yi-chao 《Computer Aided Drafting,Design and Manufacturing》 2014年第4期49-55,共7页
We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to... We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach. 展开更多
关键词 surface modeling curve network car styling statistic morphable model
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部