Monolithic electro absorption modulated distributed feedback(DFB) lasers are proposed and fabricated by using a modified double stack active layer.The 38mA threshold,9dB extinction ratio (from 0 5V to 3 0V),and ab...Monolithic electro absorption modulated distributed feedback(DFB) lasers are proposed and fabricated by using a modified double stack active layer.The 38mA threshold,9dB extinction ratio (from 0 5V to 3 0V),and about 5mW output power at the 100mA operation current are achieved.Compared with other reported results (only 1 5mW at the same operation current) of the traditional stack active structure,the proposed structure improves the output power of devices.展开更多
Monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is an important development direction of ultra-high speed integrated circuit. A kind of top-RTD and bottom-HEMT...Monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is an important development direction of ultra-high speed integrated circuit. A kind of top-RTD and bottom-HEMT material structure is epitaxied on InP substrate through molecular beam epitaxy. Based on wet chemical etching, metal lift-off and air bridge interconnection technology, RTD and HEMT are fabricated simultaneously. The peak-to-valley current ratio of RTD is 7.7 and the peak voltage is 0.33 V at room temperature. The pinch-off voltage is -0.5 V and the current gain cut-frequency is 30 GHz for a 1.0 μm gate length depletion mode HEMT. The two devices are conformable in current magnitude, which is suitable for the construction of various RTD/HEMT monolithic integration logic circuits.展开更多
The resonant tunneling diode (RTD) is a kind of novel ultra-high speed and ultra-high frequency negative differential resistance nanoelectronic device. Integration of RTD and other three-terminal compound semiconducto...The resonant tunneling diode (RTD) is a kind of novel ultra-high speed and ultra-high frequency negative differential resistance nanoelectronic device. Integration of RTD and other three-terminal compound semiconductor devices is one important direction of high speed integrated circuit development. In this paper, monolithic integration technology of RTD and high electron mobility transistor (HEMT) based on GaAs substrate was discussed. A top-RTD and bottom-HEMT material structure was proposed and epitaxyed. Based on wet chemical etching, electron beam lithography, metal lift-off and air bridge technology, RTD and HEMT were fabricated on the same wafer. The peak-to-valley current ratio of RTD is 4 and the peak voltage is 0.5 V. The maximal transconductance is 120 mS/mm for a 0.25 μm gate length depletion mode HEMT. Current levels of two devices are basically suited. The results validate the feasibility of the designed integration process.展开更多
A 16-channel variable attenuator multiplexer/demultiplexer (VMUX) device is demonstrated. The VM UX is based on a rib-type structure on a silicon-on-insulator (SOI) platform. It consists of a 100-GHz arrayed waveg...A 16-channel variable attenuator multiplexer/demultiplexer (VMUX) device is demonstrated. The VM UX is based on a rib-type structure on a silicon-on-insulator (SOI) platform. It consists of a 100-GHz arrayed waveguide grating (AWG) and an electro-optic variable optical attenuator (VOA) array with a p-i-n lateral diode structure. The insertion loss of the demonstrated device is about 9.1 dB and the corresponding crosstalk is about 10 dB. The injected current of the VOA is 60.74 mA at 20 dB attenuation and the whole area of the device is 2.9 × 1 mm2. The VMUX performs an excellent function of wavelength demultiplexing and optical power balancing in 16 channels.展开更多
Active electronics are usually composed of semiconductor and metal electrodes which are connected by multiple vacuum deposition steps and photolithography patterning.However,the presence of interface of dissimilar mat...Active electronics are usually composed of semiconductor and metal electrodes which are connected by multiple vacuum deposition steps and photolithography patterning.However,the presence of interface of dissimilar material between semiconductor and metal electrode makes various problems in electrical contacts and mechanical failure.The ideal electronics should not have defective interfaces of dissimilar materials.In this study,we developed a novel method to fabricate active electronic components in a monolithic seamless fashion where both metal and semiconductor can be prepared from the same monolith material without creating a semiconductor-metal interface by reversible selective laser-induced redox(rSLIR)method.Furthermore,rSLIR can control the oxidation state of transition metal(Cu)to yield semiconductors with two different bandgap states(Cu_(2)O and CuO with bandgaps of 2.1 and 1.2 eV,respectively),which may allow multifunctional sensors with multiple bandgaps from the same materials.This novel method enables the seamless integration of single-phase Cu,Cu_(2)O,and CuO,simultaneously while allowing reversible,selec-tive conversion between oxidation states by simply shining laser light.Moreover,we fabricated a flexible monolithic metal-semiconduc-tor-metal multispectral photodetector that can detect multiple wavelengths.The unique monolithic characteristics of rSLIR process can provide next-generation electronics fabrication method overcoming the limitation of conventional photolithography methods.展开更多
A monolithic integrated variable attenuator multiplexer/demultiplexer is demonstrated. It is composed of a 16-channel 200 GHz silica-based arrayed waveguide grating and an array of Mach-Zehnder interferometer thermo-o...A monolithic integrated variable attenuator multiplexer/demultiplexer is demonstrated. It is composed of a 16-channel 200 GHz silica-based arrayed waveguide grating and an array of Mach-Zehnder interferometer thermo-optic variable optical attenuators. The integrated device is fabricated on a quartz substrate, which eliminates the process of depositing the undercladding layer and reduces the power consumption compared with a device fabricated on a silicon substrate. The insertion loss and crosstalk of the integrated device are -5 dB and less than -22 dB, respectively. The power consumption is only 110 mW at the attenuation of 20 dB per channel.展开更多
A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure opt...A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.展开更多
A solar-blind multi-quantum well(MQW)structure wafer based on AlGaN materials is epitaxial growth by metal-organic chemical vapor deposition(MOCVD).The monolithically integrated photonic chips including light-emitting...A solar-blind multi-quantum well(MQW)structure wafer based on AlGaN materials is epitaxial growth by metal-organic chemical vapor deposition(MOCVD).The monolithically integrated photonic chips including light-emitting diodes(LEDs),waveguides,and photodetec-tors(PDs)are presented.The results of the finite-difference time-domain(FDTD)simulation confirm the strong light constraint of the wave-guide designed with the triangular structure in the optical coupling region.Furthermore,in virtue of predominant ultraviolet transverse mag-netic(TM)modes,the solar blind optical signal is more conducive to lateral transmission along the waveguide inside the integrated chip.The integrated PDs demonstrate sufficient photosensitivity to the optical signal from the integrated LEDs.When the LEDs are operated at 100 mA current,the photo-to-dark current ratio(PDCR)of the integrated PD is about seven orders of magnitude.The responsivity,specific detectivity,and external quantum efficiency of the integrated self-driven PD are 74.89 A/W,4.22×1013 Jones,and 3.38×104%,respectively.The stable on-chip optical information transmission capability of the monolithically integrated photonic chips confirms the great potential for application in large-scale on-chip optical communication in the future.展开更多
The monolithic integrated micro sensor is an important direction in the fields of integrated circuits and micro sensors. In this paper,a monolithic thermal vacuum sensor based on a micro-hotplate (MHP) and operating...The monolithic integrated micro sensor is an important direction in the fields of integrated circuits and micro sensors. In this paper,a monolithic thermal vacuum sensor based on a micro-hotplate (MHP) and operating under constant bias voltage conditions was designed. A new monolithic integrating mode was proposed,in which the dielectric and passiva- tion layers in standard CMOS processes were used as sensor structure layers,gate polysilicon as the sacrificial layer,and the second polysilicon layer as the sensor heating resistor. Then, the fabricating processes were designed and the monolithic thermal vacuum sensor was fabricated with a 0. 6μm mixed signal CMOS process followed by sacrificial layer etching technology. The measurement results show that the fabricated monolithic vacuum sensor can measure the pressure range of 2- 10^5 Pa and the output voltage is adjustable.展开更多
A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the ...A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.展开更多
A monolithic integration of the light emitting diode(LED)and photodetector(PD)based onⅢ-nitride is designed and fabricated on a sapphire substrate to act as a transceiver.Due to the coexistence of light emission and ...A monolithic integration of the light emitting diode(LED)and photodetector(PD)based onⅢ-nitride is designed and fabricated on a sapphire substrate to act as a transceiver.Due to the coexistence of light emission and detection phenomenon of the multi-quantum well(MQW)structure,the monolithic transceiver can effectively sense environmental changes.By integrating a deformable Polydimethylsiloxane(PDMS)film on the transceiver chip,external force variation can be effectively detected.As the thickness of the PDMS reduces,the sensitivity significantly improves but at the expense of the measuring range.A sensitivity of 2.9683%per newton for a range of 0-11 N is obtained when a 2 mm-thick PDMS film is packaged.The proposed monolithic GaN transceiver-based sensing system has the advantages of compactness,low cost,and simple assembly,providing an optional method for practical applications.展开更多
A compact and stable three-port optical gate has been successfully fabricated by monolithically integrating a simple photodiode and an electroabsorption modulator. The gate shows an excellent DC logic "and" function...A compact and stable three-port optical gate has been successfully fabricated by monolithically integrating a simple photodiode and an electroabsorption modulator. The gate shows an excellent DC logic "and" function with different load resistors. Its dynamical characteristics without packaging have also been measured. We observed a dynamic extinction ratio of over 7dB with a 95012 load resistor and a 7mW control light power at 622Mbit/s.展开更多
A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the jun...A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the junction capacitance.According to this model,the photodiode and a CMOS receiver circuit are simulated and designed simultaneously under a universal circuit simulation environment.展开更多
A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packagi...A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.展开更多
This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption m...This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.展开更多
Diffractive 11-phase-level Si microlens arrays are fabricated by a special method, i.e. part-etching. The method can increase focal length of diffractive microlens arrays. By using this method, the microlens arrays on...Diffractive 11-phase-level Si microlens arrays are fabricated by a special method, i.e. part-etching. The method can increase focal length of diffractive microlens arrays. By using this method, the microlens arrays on the back side of the Si substrate and PtSi IR focal plane arrays(FPAs) on the front side of the same wafer are monolithically integrated together. The IR response characteristics of the integrated devices are improved greatly.展开更多
Monolithic three-dimensional(M3D)integration represents a transformative approach in semiconductor technology,enabling the vertical integration of diverse functionalities within a single chip.This review explores the ...Monolithic three-dimensional(M3D)integration represents a transformative approach in semiconductor technology,enabling the vertical integration of diverse functionalities within a single chip.This review explores the evolution of M3D integration from traditional bulk semiconductors to low-dimensional materials like two-dimensioanl(2D)transition metal dichalcogenides(TMDCs)and carbon nanotubes(CNTs).Key applications include logic circuits,static random access memory(SRAM),resistive random access memory(RRAM),sensors,optoelectronics,and artificial intelligence(AI)processing.M3D integration enhances device performance by reducing footprint,improving power efficiency,and alleviating the von Neumann bottleneck.The integration of 2D materials in M3D structures demonstrates significant advancements in terms of scalability,energy efficiency,and functional diversity.Challenges in manufacturing and scaling are discussed,along with prospects for future research directions.Overall,the M3D integration with low-dimensional materials presents a promising pathway for the development of next-generation electronic devices and systems.展开更多
Two kinds of monolithically fabricated circuits are demonstrated in GaAs-based material systems using resonant tunneling diodes(RTD) and metal-semiconductor-metal photo detectors(MSM PD). The electronic characteri...Two kinds of monolithically fabricated circuits are demonstrated in GaAs-based material systems using resonant tunneling diodes(RTD) and metal-semiconductor-metal photo detectors(MSM PD). The electronic characteristics of these fabricated RTD devices,MSM devices,and integrated circuits are tested at room temperature. The results show that the current peak-to-valley ratio is 4,and the photocurrent at 5V is enhanced by a factor of nearly 9,from 2 to about 18μA by use of recessed electrodes. The working theory and logical functions of the circuits are validated.展开更多
A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteri...A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteristic test shows that the output i dB compression point is about -8.5 dBm at 334 GHz and the maximum efficiency is obtained at the point, which is slightly below the 1 dB compression point. Compared with the conventional hybrid integrated circuit, a major advantage of the monolithic integrated circuit is the significant improvement of reliability and consistency. In this work, a terahertz monolithic frequency multiplier at this band is designed and fabricated.展开更多
Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heteroju...Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heterojunction bipolar transistor(DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the In P substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are-2.688 dBm at 210 GHz and-2.88 dBm at 220 GHz,respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications.展开更多
文摘Monolithic electro absorption modulated distributed feedback(DFB) lasers are proposed and fabricated by using a modified double stack active layer.The 38mA threshold,9dB extinction ratio (from 0 5V to 3 0V),and about 5mW output power at the 100mA operation current are achieved.Compared with other reported results (only 1 5mW at the same operation current) of the traditional stack active structure,the proposed structure improves the output power of devices.
基金Supported by National Natural Science Foundation of China (No. 60876009)Tianjin Research Program of Application Foundation and Advanced Technology (No. 09JCZDJC16600)
文摘Monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is an important development direction of ultra-high speed integrated circuit. A kind of top-RTD and bottom-HEMT material structure is epitaxied on InP substrate through molecular beam epitaxy. Based on wet chemical etching, metal lift-off and air bridge interconnection technology, RTD and HEMT are fabricated simultaneously. The peak-to-valley current ratio of RTD is 7.7 and the peak voltage is 0.33 V at room temperature. The pinch-off voltage is -0.5 V and the current gain cut-frequency is 30 GHz for a 1.0 μm gate length depletion mode HEMT. The two devices are conformable in current magnitude, which is suitable for the construction of various RTD/HEMT monolithic integration logic circuits.
基金Supported by Funds of National Defense Technology Key Laboratory (NO.9140C060203060C0603)China Postdoctoral Science Foundation(NO.20060400189) .
文摘The resonant tunneling diode (RTD) is a kind of novel ultra-high speed and ultra-high frequency negative differential resistance nanoelectronic device. Integration of RTD and other three-terminal compound semiconductor devices is one important direction of high speed integrated circuit development. In this paper, monolithic integration technology of RTD and high electron mobility transistor (HEMT) based on GaAs substrate was discussed. A top-RTD and bottom-HEMT material structure was proposed and epitaxyed. Based on wet chemical etching, electron beam lithography, metal lift-off and air bridge technology, RTD and HEMT were fabricated on the same wafer. The peak-to-valley current ratio of RTD is 4 and the peak voltage is 0.5 V. The maximal transconductance is 120 mS/mm for a 0.25 μm gate length depletion mode HEMT. Current levels of two devices are basically suited. The results validate the feasibility of the designed integration process.
基金supported by the National High Technology Research and Development Program of China(No.2013AA031402)
文摘A 16-channel variable attenuator multiplexer/demultiplexer (VMUX) device is demonstrated. The VM UX is based on a rib-type structure on a silicon-on-insulator (SOI) platform. It consists of a 100-GHz arrayed waveguide grating (AWG) and an electro-optic variable optical attenuator (VOA) array with a p-i-n lateral diode structure. The insertion loss of the demonstrated device is about 9.1 dB and the corresponding crosstalk is about 10 dB. The injected current of the VOA is 60.74 mA at 20 dB attenuation and the whole area of the device is 2.9 × 1 mm2. The VMUX performs an excellent function of wavelength demultiplexing and optical power balancing in 16 channels.
基金supported by a National Research Foundation of Korea(NRF)Grant funded through the Basic Science Research Program(2021R1A2B5B03001691,2021M3H4A1A02050237,2016R1A5A1938472)by Creative Materials Discovery Program(NRF-2016M3D1A1900035).M.Cho acknowledges the financial support from the National Research Foundation of Korea(NRF)grant funded by the Korean government(2021R1A4A1033224).
文摘Active electronics are usually composed of semiconductor and metal electrodes which are connected by multiple vacuum deposition steps and photolithography patterning.However,the presence of interface of dissimilar material between semiconductor and metal electrode makes various problems in electrical contacts and mechanical failure.The ideal electronics should not have defective interfaces of dissimilar materials.In this study,we developed a novel method to fabricate active electronic components in a monolithic seamless fashion where both metal and semiconductor can be prepared from the same monolith material without creating a semiconductor-metal interface by reversible selective laser-induced redox(rSLIR)method.Furthermore,rSLIR can control the oxidation state of transition metal(Cu)to yield semiconductors with two different bandgap states(Cu_(2)O and CuO with bandgaps of 2.1 and 1.2 eV,respectively),which may allow multifunctional sensors with multiple bandgaps from the same materials.This novel method enables the seamless integration of single-phase Cu,Cu_(2)O,and CuO,simultaneously while allowing reversible,selec-tive conversion between oxidation states by simply shining laser light.Moreover,we fabricated a flexible monolithic metal-semiconduc-tor-metal multispectral photodetector that can detect multiple wavelengths.The unique monolithic characteristics of rSLIR process can provide next-generation electronics fabrication method overcoming the limitation of conventional photolithography methods.
基金Project supported by the National High Technology Research and Development Program of China(Nos.2013AA031402,2011AA010303)the National Natural Science Foundation of China(Nos.61274047,61090390,61275029,61205044,61307034)the Major Science&Technology Specific Project of He’nan Province of China,and the Independent Innovation Foundation of He’nan Province of China
文摘A monolithic integrated variable attenuator multiplexer/demultiplexer is demonstrated. It is composed of a 16-channel 200 GHz silica-based arrayed waveguide grating and an array of Mach-Zehnder interferometer thermo-optic variable optical attenuators. The integrated device is fabricated on a quartz substrate, which eliminates the process of depositing the undercladding layer and reduces the power consumption compared with a device fabricated on a silicon substrate. The insertion loss and crosstalk of the integrated device are -5 dB and less than -22 dB, respectively. The power consumption is only 110 mW at the attenuation of 20 dB per channel.
基金Supported by the self-funded project of Kunming Institute of Physics。
文摘A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.
基金This work was financially supported by the Key Field R&D Program of Guangdong Province under Grant No.2021B0101300001the National Key R&D Program of China under Grant No.2022YFB3605003+3 种基金the Nation⁃al Natural Science Foundation of China under Grant Nos.52192614 and 62135013Beijing Natural Science Foundation under Grant No.4222077Beijing Science and Technology Plan under Grant No.Z221100002722019Guangdong Basic and Applied Basic Research Foundation under Grant No.2022B1515120081.
文摘A solar-blind multi-quantum well(MQW)structure wafer based on AlGaN materials is epitaxial growth by metal-organic chemical vapor deposition(MOCVD).The monolithically integrated photonic chips including light-emitting diodes(LEDs),waveguides,and photodetec-tors(PDs)are presented.The results of the finite-difference time-domain(FDTD)simulation confirm the strong light constraint of the wave-guide designed with the triangular structure in the optical coupling region.Furthermore,in virtue of predominant ultraviolet transverse mag-netic(TM)modes,the solar blind optical signal is more conducive to lateral transmission along the waveguide inside the integrated chip.The integrated PDs demonstrate sufficient photosensitivity to the optical signal from the integrated LEDs.When the LEDs are operated at 100 mA current,the photo-to-dark current ratio(PDCR)of the integrated PD is about seven orders of magnitude.The responsivity,specific detectivity,and external quantum efficiency of the integrated self-driven PD are 74.89 A/W,4.22×1013 Jones,and 3.38×104%,respectively.The stable on-chip optical information transmission capability of the monolithically integrated photonic chips confirms the great potential for application in large-scale on-chip optical communication in the future.
文摘The monolithic integrated micro sensor is an important direction in the fields of integrated circuits and micro sensors. In this paper,a monolithic thermal vacuum sensor based on a micro-hotplate (MHP) and operating under constant bias voltage conditions was designed. A new monolithic integrating mode was proposed,in which the dielectric and passiva- tion layers in standard CMOS processes were used as sensor structure layers,gate polysilicon as the sacrificial layer,and the second polysilicon layer as the sensor heating resistor. Then, the fabricating processes were designed and the monolithic thermal vacuum sensor was fabricated with a 0. 6μm mixed signal CMOS process followed by sacrificial layer etching technology. The measurement results show that the fabricated monolithic vacuum sensor can measure the pressure range of 2- 10^5 Pa and the output voltage is adjustable.
文摘A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.
基金supported by the National Key Research and Development Program under Grant No.2024YFE0204700Natural Science Foundation of Jiangsu Province under Grant No.BG2024023Higher Education Discipline Innovation Project under Grant No.D17018。
文摘A monolithic integration of the light emitting diode(LED)and photodetector(PD)based onⅢ-nitride is designed and fabricated on a sapphire substrate to act as a transceiver.Due to the coexistence of light emission and detection phenomenon of the multi-quantum well(MQW)structure,the monolithic transceiver can effectively sense environmental changes.By integrating a deformable Polydimethylsiloxane(PDMS)film on the transceiver chip,external force variation can be effectively detected.As the thickness of the PDMS reduces,the sensitivity significantly improves but at the expense of the measuring range.A sensitivity of 2.9683%per newton for a range of 0-11 N is obtained when a 2 mm-thick PDMS film is packaged.The proposed monolithic GaN transceiver-based sensing system has the advantages of compactness,low cost,and simple assembly,providing an optional method for practical applications.
文摘A compact and stable three-port optical gate has been successfully fabricated by monolithically integrating a simple photodiode and an electroabsorption modulator. The gate shows an excellent DC logic "and" function with different load resistors. Its dynamical characteristics without packaging have also been measured. We observed a dynamic extinction ratio of over 7dB with a 95012 load resistor and a 7mW control light power at 622Mbit/s.
文摘A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the junction capacitance.According to this model,the photodiode and a CMOS receiver circuit are simulated and designed simultaneously under a universal circuit simulation environment.
文摘A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.
基金supported by the National Natural Science Foundation of China (Grant No 90401025)the National 973 project (Grant No 2006CB604901)
文摘This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.
文摘Diffractive 11-phase-level Si microlens arrays are fabricated by a special method, i.e. part-etching. The method can increase focal length of diffractive microlens arrays. By using this method, the microlens arrays on the back side of the Si substrate and PtSi IR focal plane arrays(FPAs) on the front side of the same wafer are monolithically integrated together. The IR response characteristics of the integrated devices are improved greatly.
基金fundings from the National Natural Science Foundation of China(Nos.62274013 and 92163206)the National Key Research and Development Program of China(No.2023YFB3405600)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.12321004)。
文摘Monolithic three-dimensional(M3D)integration represents a transformative approach in semiconductor technology,enabling the vertical integration of diverse functionalities within a single chip.This review explores the evolution of M3D integration from traditional bulk semiconductors to low-dimensional materials like two-dimensioanl(2D)transition metal dichalcogenides(TMDCs)and carbon nanotubes(CNTs).Key applications include logic circuits,static random access memory(SRAM),resistive random access memory(RRAM),sensors,optoelectronics,and artificial intelligence(AI)processing.M3D integration enhances device performance by reducing footprint,improving power efficiency,and alleviating the von Neumann bottleneck.The integration of 2D materials in M3D structures demonstrates significant advancements in terms of scalability,energy efficiency,and functional diversity.Challenges in manufacturing and scaling are discussed,along with prospects for future research directions.Overall,the M3D integration with low-dimensional materials presents a promising pathway for the development of next-generation electronic devices and systems.
文摘Two kinds of monolithically fabricated circuits are demonstrated in GaAs-based material systems using resonant tunneling diodes(RTD) and metal-semiconductor-metal photo detectors(MSM PD). The electronic characteristics of these fabricated RTD devices,MSM devices,and integrated circuits are tested at room temperature. The results show that the current peak-to-valley ratio is 4,and the photocurrent at 5V is enhanced by a factor of nearly 9,from 2 to about 18μA by use of recessed electrodes. The working theory and logical functions of the circuits are validated.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2011AA010203the National Basic Research Program of China under Grant Nos 2011CB201704 and 2010CB327502the National Natural Science Foundation of China under Grant Nos 61434006 and 61106074
文摘A 330-500 GHz zero-biased broadband monolithic integrated tripler is reported. The measured results show that the maximum efficiency and the maximum output power are 2% and 194μW at 348 GHz. The saturation characteristic test shows that the output i dB compression point is about -8.5 dBm at 334 GHz and the maximum efficiency is obtained at the point, which is slightly below the 1 dB compression point. Compared with the conventional hybrid integrated circuit, a major advantage of the monolithic integrated circuit is the significant improvement of reliability and consistency. In this work, a terahertz monolithic frequency multiplier at this band is designed and fabricated.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501091)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.ZYGX2014J003 and ZYGX2013J020)
文摘Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heterojunction bipolar transistor(DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the In P substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are-2.688 dBm at 210 GHz and-2.88 dBm at 220 GHz,respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications.