期刊文献+
共找到348,223篇文章
< 1 2 250 >
每页显示 20 50 100
Robust and Biodegradable Heterogeneous Electronics with Customizable Cylindrical Architecture for Interference-Free Respiratory Rate Monitoring
1
作者 Jing Zhang Wenqi Wang +9 位作者 Sanwei Hao Hongnan Zhu Chao Wang Zhouyang Hu Yaru Yu Fangqing Wang Peng Fu Changyou Shao Jun Yang Hailin Cong 《Nano-Micro Letters》 2026年第1期914-934,共21页
A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without in... A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness.However,a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations,as well as mechanical motion artifacts.Herein,a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode,featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness,thereby realizing the long-term breath-induced pressure detection.Notably,molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration,driven by shear forces and interfacial interactions,which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer.The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation(0-120°,~2.8×10^(-3) A)and sensing accuracy without crosstalk(humidity 50%-100%and temperature 30-80).Besides,the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages(average prediction accuracy~90%).It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory. 展开更多
关键词 Wearable electronics Piezoresistive sensor HETEROGENEOUS CELLULOSE Respiratory monitoring
在线阅读 下载PDF
Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring
2
作者 Moneerah Alotaibi 《Computers, Materials & Continua》 2026年第1期1629-1648,共20页
Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and stru... Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods,which often demand extensive computational resources and struggle with diverse data acquisition techniques.This research presents a novel approach for vehicle classification and recognition in aerial image sequences,integrating multiple advanced techniques to enhance detection accuracy.The proposed model begins with preprocessing using Multiscale Retinex(MSR)to enhance image quality,followed by Expectation-Maximization(EM)Segmentation for precise foreground object identification.Vehicle detection is performed using the state-of-the-art YOLOv10 framework,while feature extraction incorporates Maximally Stable Extremal Regions(MSER),Dense Scale-Invariant Feature Transform(Dense SIFT),and Zernike Moments Features to capture distinct object characteristics.Feature optimization is further refined through a Hybrid Swarm-based Optimization algorithm,ensuring optimal feature selection for improved classification performance.The final classification is conducted using a Vision Transformer,leveraging its robust learning capabilities for enhanced accuracy.Experimental evaluations on benchmark datasets,including UAVDT and the Unmanned Aerial Vehicle Intruder Dataset(UAVID),demonstrate the superiority of the proposed approach,achieving an accuracy of 94.40%on UAVDT and 93.57%on UAVID.The results highlight the efficacy of the model in significantly enhancing vehicle detection and classification in aerial imagery,outperforming existing methodologies and offering a statistically validated improvement for intelligent traffic monitoring systems compared to existing approaches. 展开更多
关键词 Machine learning semantic segmentation remote sensors deep learning object monitoring system
在线阅读 下载PDF
Noninvasive On-Skin Biosensors for Monitoring Diabetes Mellitus
3
作者 Ali Sedighi Tianyu Kou +1 位作者 Hui Huang Yi Li 《Nano-Micro Letters》 2026年第1期375-437,共63页
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in... Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management. 展开更多
关键词 Wearable biosensors Multimodal sensors Diabetes monitoring Sweat biomarkers Glucose biosensors
在线阅读 下载PDF
Skin-Inspired Ultra-Linear Flexible Iontronic Pressure Sensors for Wearable Musculoskeletal Monitoring
4
作者 Pei Li Shipan Lang +6 位作者 Lei Xie Yong Zhang Xin Gou Chao Zhang Chenhui Dong Chunbao Li Jun Yang 《Nano-Micro Letters》 2026年第2期454-470,共17页
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show... The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices. 展开更多
关键词 Iontronic sensor Skin-inspired design Linear range Linear sensing factor Biomechanical monitoring
在线阅读 下载PDF
Earthquake monitoring and high-resolution velocity tomography for the central Longmenshan fault zone by a temporary dense seismic array 被引量:1
5
作者 ShaoBo Yang HaiJiang Zhang +4 位作者 MaoMao Wang Ji Gao Shuaijun Wang BaoJin Liu XiWei Xu 《Earth and Planetary Physics》 2025年第2期239-252,共14页
The Longmenshan(LMS)fault zone is located at the junction of the eastern Tibetan Plateau and the Sichuan Basin and is of great significance for studying regional tectonics and earthquake hazards.Although regional velo... The Longmenshan(LMS)fault zone is located at the junction of the eastern Tibetan Plateau and the Sichuan Basin and is of great significance for studying regional tectonics and earthquake hazards.Although regional velocity models are available for the LMS fault zone,high-resolution velocity models are lacking.Therefore,a dense array of 240 short-period seismometers was deployed around the central segment of the LMS fault zone for approximately 30 days to monitor earthquakes and characterize fine structures of the fault zone.Considering the large quantity of observed seismic data,the data processing workflow consisted of deep learning-based automatic earthquake detection,phase arrival picking,and association.Compared with the earthquake catalog released by the China Earthquake Administration,many more earthquakes were detected by the dense array.Double-difference seismic tomography was adopted to determine V_(p),V_(s),and V_(p)/V_(s)models as well as earthquake locations.The checkerboard test showed that the velocity models have spatial resolutions of approximately 5 km in the horizontal directions and 2 km at depth.To the west of the Yingxiu–Beichuan Fault(YBF),the Precambrian Pengguan complex,where most of earthquakes occurred,is characterized by high velocity and low V_(p)/V_(s)values.In comparison,to the east of the YBF,the Upper Paleozoic to Jurassic sediments,where few earthquakes occurred,show low velocity and high V_(p)/V_(s)values.Our results suggest that the earthquake activity in the LMS fault zone is controlled by the strength of the rock compositions.When the high-resolution velocity models were combined with the relocated earthquakes,we were also able to delineate the fault geometry for different faults in the LMS fault zone. 展开更多
关键词 Longmenshan fault zone dense seismic array deep learning double-difference seismic tomography seismic velocity model earthquake locations fault geometry
在线阅读 下载PDF
A monitoring system to improve fault diagnosis in telescope arrays
6
作者 Yang Xu Guangwei Li +6 位作者 Jing Wang Liping Xin Hongbo Cai Xuhui Han Xiaomeng Lu Lei Huang Jianyan Wei 《Astronomical Techniques and Instruments》 2025年第4期246-254,共9页
The Ground-based Wide-Angle Cameras array necessitates the integration of more than 100 hardware devices,100 servers,and 2500 software modules that must be synchronized within a 3-second imaging cycle.However,the comp... The Ground-based Wide-Angle Cameras array necessitates the integration of more than 100 hardware devices,100 servers,and 2500 software modules that must be synchronized within a 3-second imaging cycle.However,the complexity of real-time,high-concurrency processing of large datasets has historically resulted in substantial failure rates,with an observation efficiency estimated at less than 50%in 2023.To mitigate these challenges,we developed a monitoring system designed to improve fault diagnosis efficiency.It includes two innovative monitoring views for“state evolution”and“transient lifecycle”.Combining these with“instantaneous state”and“key parameter”monitoring views,the system represents a comprehensive monitoring strategy.Here we detail the system architecture,data collection methods,and design philosophy of the monitoring views.During one year of fault diagnosis experimental practice,the proposed system demonstrated its ability to identify and localize faults within minutes,achieving fault localization nearly ten times faster than traditional methods.Additionally,the system design exhibited high generalizability,with possible applicability to other telescope array systems. 展开更多
关键词 Automated telescopes Astronomical image processing fault diagnosis monitoring system
在线阅读 下载PDF
Wireless Photovoltaic Fault Monitoring System
7
作者 Wenbo Xiao Huangfeng Dong +2 位作者 Huaming Wu Yongbo Li Bin Liu 《Instrumentation》 2025年第2期23-35,共13页
This study presents a wireless photovoltaic fault monitoring system integrating an STM32 microcontroller with an Improved Horned Lizard Optimization Algorithm(IHLOA)and a Multi-Layer Perceptron(MLP)neural network.The ... This study presents a wireless photovoltaic fault monitoring system integrating an STM32 microcontroller with an Improved Horned Lizard Optimization Algorithm(IHLOA)and a Multi-Layer Perceptron(MLP)neural network.The IHLOA algorithm introduces three key innovations:(1)chaotic initialization to enhance population diversity and global search capability,(2)adaptive random walk strategies to escape local optima,and(3)a cross-strategy mechanism to accelerate convergence and enhance fault detection accuracy and robustness.The system comprises both hardware and software components.The hardware includes sensors such as the BH1750 light intensity sensor,DS18B20 temperature sensor,and INA226 current and voltage sensor,all interfaced with the STM32F103C8T6 microcontroller and the ESP8266 module for wireless data transmission.The software,developed using QT Creator,incorporates an IHLOA-MLP model for fault diagnosis.The user-friendly interface facilitates intuitive monitoring and scalability for multiple systems.Experimental validation on a PV array demonstrates that the IHLOA-MLP model achieves a fault detection accuracy of 94.55%,which is 2.4%higher than the standard MLP,while reducing variance by 63.64%compared to the standard MLP.This highlights its accuracy and robustness.When compared to other optimization algorithms such as BKA-MLP(94.10%accuracy)and HLOA-MLP(94.00%accuracy),the IHLOA-MLP further reduces variance to 0.08,showcasing its superior performance.The system selects voltage as a feature vector to maintain circuit stability,avoiding efficiency impacts from series current sensors.This combined hardware and software approach further reduces false alarms to 0.1%through a consecutive-judgment mechanism,significantly enhancing practical reliability.This work provides a cost-effective and scalable solution for improving the stability and safety of PV systems in real-world applications. 展开更多
关键词 STM32 horned lizard optimization algorithm multilayer perceptron fault diagnosis photovoltaic monitoring
原文传递
Fault detection and health monitoring of high-power thyristor converter based on long short-term memory in nuclear fusion
8
作者 Ling ZHANG Ge GAO Li JIANG 《Plasma Science and Technology》 2025年第4期64-73,共10页
This research focuses on solving the fault detection and health monitoring of high-power thyristor converter.In terms of the critical role of thyristor converter in nuclear fusion system,a method based on long short-t... This research focuses on solving the fault detection and health monitoring of high-power thyristor converter.In terms of the critical role of thyristor converter in nuclear fusion system,a method based on long short-term memory(LSTM)neural network model is proposed to monitor the operational state of the converter and accurately detect faults as they occur.By sampling and processing a large number of thyristor converter operation data,the LSTM model is trained to identify and detect abnormal state,and the power supply health status is monitored.Compared with traditional methods,LSTM model shows higher accuracy and abnormal state detection ability.The experimental results show that this method can effectively improve the reliability and safety of the thyristor converter,and provide a strong guarantee for the stable operation of the nuclear fusion reactor. 展开更多
关键词 fault detection and health monitoring high-power supply thyristor converter long short-term memory(LSTM) nuclear fusion(Some figures may appear in colour only in the online journal)
在线阅读 下载PDF
Large Models for Machine Monitoring and Fault Diagnostics:Opportunities,Challenges,and Future Direction
9
作者 Xuefeng Chen Yaguo Lei +9 位作者 Yan-Fu Li Simon Parkinson Xiang Li Jinxin Liu Fan Lu Huan Wang Zisheng Wang Bin Yang Shilong Ye Zhibin Zhao 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第2期76-90,共15页
As a critical technology for industrial system reliability and safety,machine monitoring and fault diagnostics have advanced transformatively with large language models(LLMs).This paper reviews LLM-based monitoring an... As a critical technology for industrial system reliability and safety,machine monitoring and fault diagnostics have advanced transformatively with large language models(LLMs).This paper reviews LLM-based monitoring and diagnostics methodologies,categorizing them into in-context learning,fine-tuning,retrievalaugmented generation,multimodal learning,and time series approaches,analyzing advances in diagnostics and decision support.It identifies bottlenecks like limited industrial data and edge deployment issues,proposing a three-stage roadmap to highlight LLMs’potential in shaping adaptive,interpretable PHM frameworks. 展开更多
关键词 context learning fault diagnostics LLMs multimodal learning
在线阅读 下载PDF
Integrated seismo-geodetic observatory network for monitoring the Lembang Fault,West Java,Indonesia
10
作者 Nuraini Rahma Hanifa Endra Gunawan +22 位作者 Dini Nurfiani Achmad Fakhrus Shomim Faiz Muttaqy Aang Gunawan Sutyawan Lina Handayani Deasy Arisa Rian Amukti Muhammad Hanif Yayat Sudrajat Dannie Hidayat Iwan Hermawan Agus Men Riyanto Eko Yulianto Adrin Tohari Qori'atu Zahro Atin Nur Aulia Juniator Tulius Sri Widiyantoro Rachmah Ida Cecep Pratama Ridwan Suhud Putri Natari Ratna Titi Anggono 《Earth and Planetary Physics》 2025年第5期1087-1097,共11页
The Lembang Fault is a major geological feature in West Java that borders the northern edge of Bandung(one of Indonesia’s largest cities).It lies just south of the active Tangkuban Perahu Volcano,exhibiting clear geo... The Lembang Fault is a major geological feature in West Java that borders the northern edge of Bandung(one of Indonesia’s largest cities).It lies just south of the active Tangkuban Perahu Volcano,exhibiting clear geomorphic signs of recent activity,and has been scientifically confirmed as active through geological and geophysical studies.In this work,we describe an Integrated along the Lembang Fault,which can be used for geodynamic research in Indonesia.We discuss the design of a seismic and Global Navigation Satellite System(GNSS)array sensor network for continuous monitoring,and report the status of monitoring stations that periodically collect highly accurate,continuous seismographic and GNSS readings,transmitting these data to a central server in Bandung for post-processing.Solutions from the array data are used to provide precise measurements of the deformation of the Earth’s surface over large distances,allowing for spatio-temporal tracking of tectonic movement,and resulting in a better understanding of seismic events in the region.In this study,our investigation revealed a significant compression rate of an estimated 13 microstrain/yr along the Lembang Fault,whereas the strain rate is much smaller farther south of the fault.This study presents the design of a seismo-geodetic observatory network that can be implemented in earthquake-prone regions for mitigation purposes,with particular utility for studying other active faults that also traverse populated areas in Indonesia. 展开更多
关键词 Lembang fault seismo-geodetic observatory EARTHQUAKE disaster risk reduction
在线阅读 下载PDF
Multiscale monitoring and analysis of complex rupture and source mechanisms of mining-related seismicity on fault networks
11
作者 Chunhui Song Caiping Lu +5 位作者 Xiufeng Zhang T.C.Sunilkumar Derek Elsworth Jiefang Song Chengyu Liu Yang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5631-5648,共18页
Mining-related seismicity poses significant challenges in underground coal mining due to its complex rupture mechanisms and associated hazards.To bridge gaps in understanding these intricate processes,this study emplo... Mining-related seismicity poses significant challenges in underground coal mining due to its complex rupture mechanisms and associated hazards.To bridge gaps in understanding these intricate processes,this study employed a multi-local seismic monitoring network,integrating both in-mine and local instruments at overlapping length scales.We specifically focused on a damaging local magnitude(ML)2.6 event and its aftershocks that occurred on 10 September 2022 in the vicinity of the 3308 working face of the Yangcheng coal mine in Shandong Province,China.Moment tensor(MT)inversion revealed a complex cascading rupture mechanism:an initial moment magnitude(M_(w))2.2 normal fault slip along the DF60 fault in an ESEeWNW direction,transitioning to a M_(w)3.0 event as the FD24 and DF60 faults unclamped.The scale-independent self-similarity and stress heterogeneity of mining-related seismicity were investigated through source parameter calculations,providing valuable insights into the driving mechanism of these seismic sequences.The in-mine network,constrained by its low dynamic changes,captured only the nucleation phase of the DF60 fault.Furthermore,standard decomposition of the MT solution from the seismic network proved inadequate for accurately identifying the complex nature of the rupture.To enhance safety and risk management in mining environments,we examined the implications of source reactivation within the cluster area post-stress-adjustment.This comprehensive multiscale analysis offers crucial insights into the complex rupture mechanisms and hazards associated with mining-related seismicity.The results underscore the importance of continuous multi-local network monitoring and advanced analytical techniques for improved disaster assessment and risk mitigation in mining operations. 展开更多
关键词 Mining-induced seismicity Mining-triggered seismicity Complex rupture Collapse model Multiscale monitoring
在线阅读 下载PDF
Randomized autoregressive dynamic slow feature analysis method for industrial process fault monitoring
12
作者 Qingmin Xu Peng Li +3 位作者 Aimin Miao Xun Lang Hancheng Wang Chuangyan Yang 《Chinese Journal of Chemical Engineering》 2025年第7期298-314,共17页
Kernel-based slow feature analysis(SFA)methods have been successfully applied in the industrial process fault detection field.However,kernel-based SFA methods have high computational complexity as dealing with nonline... Kernel-based slow feature analysis(SFA)methods have been successfully applied in the industrial process fault detection field.However,kernel-based SFA methods have high computational complexity as dealing with nonlinearity,leading to delays in detecting time-varying data features.Additionally,the uncertain kernel function and kernel parameters limit the ability of the extracted features to express process characteristics,resulting in poor fault detection performance.To alleviate the above problems,a novel randomized auto-regressive dynamic slow feature analysis(RRDSFA)method is proposed to simultaneously monitor the operating point deviations and process dynamic faults,enabling real-time monitoring of data features in industrial processes.Firstly,the proposed Random Fourier mappingbased method achieves more effective nonlinear transformation,contrasting with the current kernelbased RDSFA algorithm that may lead to significant computational complexity.Secondly,a randomized RDSFA model is developed to extract nonlinear dynamic slow features.Furthermore,a Bayesian inference-based overall fault monitoring model including all RRDSFA sub-models is developed to overcome the randomness of random Fourier mapping.Finally,the superiority and effectiveness of the proposed monitoring method are demonstrated through a numerical case and a simulation of continuous stirred tank reactor. 展开更多
关键词 Slow feature analysis Random Fourier mapping Bayesian Inference Autoregressive dynamic modeling CSTR fault detection
在线阅读 下载PDF
Nonlinear online process monitoring and fault diagnosis of condenser based on kernel PCA plus FDA 被引量:5
13
作者 张曦 阎威武 +1 位作者 赵旭 邵惠鹤 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期51-56,共6页
A novel online process monitoring and fault diagnosis method of condenser based on kernel principle component analysis (KPCA) and Fisher discriminant analysis (FDA) is presented. The basic idea of this method is:... A novel online process monitoring and fault diagnosis method of condenser based on kernel principle component analysis (KPCA) and Fisher discriminant analysis (FDA) is presented. The basic idea of this method is: First map data from the original space into high-dimensional feature space via nonlinear kernel function and then extract optimal feature vector and discriminant vector in feature space and calculate the Euclidean distance between feature vectors to perform process monitoring. Similar degree between the present discriminant vector and optimal discriminant vector of fault in historical dataset is used for diagnosis. The proposed method can effectively capture the nonlinear relationship among process variables. Simulating results of the turbo generator's fault data set prove that the proposed method is effective. 展开更多
关键词 NONLINEAR kernel PCA FDA process monitoring fault diagnosis CONDENSER
在线阅读 下载PDF
Industrial LAN for Vibration Monitoring and Fault Diagnosis of Turbo-Generator
14
作者 卢荣军 高亹 Joseph Mathew 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期46-49,共4页
The unique of using industrial LAN based on field bus to construct the system of vibration monitoring and fault diagnosis is introduced. The LAN topology, client/server architecture, database and designing of applicat... The unique of using industrial LAN based on field bus to construct the system of vibration monitoring and fault diagnosis is introduced. The LAN topology, client/server architecture, database and designing of application software for vibration monitoring and fault diagnosis are involved. How to apply industrial LAN to the vibration monitoring and fault diagnosis of turbo generator is discussed, and a scheme of how to construct the industrial LAN for vibration monitoring and fault diagnosis of turbo generator is presented. 展开更多
关键词 field bus vibration monitoring fault diagnosis
在线阅读 下载PDF
Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis 被引量:20
15
作者 Wan Zhang Min-Ping Jia +1 位作者 Lin Zhu Xiao-An Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期782-795,共14页
Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com-... Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions. 展开更多
关键词 Computational intelligence Machinerycondition monitoring fault diagnosis Neural networkFuzzy logic Support vector machine - Evolutionaryalgorithms
在线阅读 下载PDF
Fault diagnosis and analysis of main sea water pump based on vibration monitoring in offshore oil field 被引量:1
16
作者 李进 赵晨光 +4 位作者 何杉 王庆国 翟爽 王鹏 杨在江 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期327-331,共5页
The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vib... The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention. 展开更多
关键词 vibration monitoring fault diagnosis equipment management centrifugal pump offshore oil field predictive maintenance
在线阅读 下载PDF
Leveraged fault identification method for receiver autonomous integrity monitoring 被引量:6
17
作者 Sun Yuan Zhang Jun Xue Rui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1217-1225,共9页
Receiver autonomous integrity monitoring(RAIM) provides integrity monitoring of global positioning system(GPS) for safety-of-life applications.In the process of RAIM, fault identification(FI) enables navigation ... Receiver autonomous integrity monitoring(RAIM) provides integrity monitoring of global positioning system(GPS) for safety-of-life applications.In the process of RAIM, fault identification(FI) enables navigation to continue in the presence of fault measurement.Affected by satellite geometry, the leverage of each measurement in position solution may differ greatly.However, the conventional RAIM FI methods are generally based on maximum likelihood of ranging error for different measurements, thereby causing a major decrease in the probability of correct identification for the fault measurement with high leverage.In this paper, the impact of leverage on the fault identification is analyzed.The leveraged RAIM fault identification(L-RAIM FI) method is proposed with consideration of the difference in leverage for each satellite in view.Furthermore,the theoretical probability of correct identification is derived to evaluate the performance of L-RAIM FI method.The experiments in various typical scenarios demonstrate the effectiveness of L-RAIM FI method over conventional FI methods in the probability of correct identification for the fault with high leverage. 展开更多
关键词 fault identification Global positioning system Leverage Navigation systems Receiver autonomousintegrity monitoring
原文传递
Active source monitoring at the Wenchuan fault zone:coseismic velocity change associated with aftershock event and its implication 被引量:7
18
作者 Wei Yang Hongkui Ge +3 位作者 Baoshan Wang Jiupeng Hu Songyong Yuan Sen Qiao 《Earthquake Science》 2014年第6期599-606,共8页
With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation rem... With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M8 5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~ 120 m rather than dynamic strong ground shaking. And a velocity decrease of -2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling. 展开更多
关键词 Wenchuan fault zone Coseismic velocity change Accurately Controlled Routinely Operated Seismic Source (ACROSS) Active monitoring Forward modeling
在线阅读 下载PDF
Early faults prediction of running state of electromechanical systems and reconfigurable integration of series safety monitoring systems 被引量:3
19
作者 Xu Xiaoli Zuo Yunbo +2 位作者 Chen Tao Liu Xiuli Chen Shanpeng 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期224-232,共9页
Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of mo... Fault prediction technology of running state of electromechanical systems is one of the key technologies that ensure safe and reliable operation of electromechanical equipment in health state. For multiple types of modern, high-end and key electromechanical equipment, this paper will describe the early faults prediction method for multi-type electromechanical systems, which is favorable for predicting early faults of complex electromechanical systems in non-stationary, nonlinear, variable working conditions and long-time running state; the paper shall introduce the reconfigurable integration technology of series safety monitoring systems based on which the integrated development platform of series safety monitoring systems is built. This platform can adapt to integrated R&D of series safety monitoring systems characterized by high technology, multiple species and low volume. With the help of this platform, series safety monitoring systems were developed, and the Remote Network Security Monitoring Center for Facility Groups was built. Experimental research and engineering applications show that: this new fault prediction method has realized the development trend features extraction of typical electromechanical systems, multi-information fusion, intelligent information decision-making and so on, improving the processing accuracy, relevance and applicability of information; new reconfigurable integration technologies have improved the integration level and R&D efficiency of series safety monitoring systems as well as expanded the scope of application; the series safety monitoring systems developed based on reconfigurable integration platform has already played an important role in many aspects including ensuring safety operation of equipment, stabilizing product quality, optimizing running state, saving energy consumption, reducing environmental pollution, improving working conditions, carrying out scientific maintenance, advancing equipment utilization, saving maintenance charge and enhancing the level of information management. 展开更多
关键词 ELECTROMECHANICAL SYSTEMS EARLY faultS safety control monitoring SYSTEMS RECONFIGURABLE INTEGRATION
在线阅读 下载PDF
Homologous fault monitoring technology of redundant INS in airborne avionics systems 被引量:4
20
作者 Xiuzhi Wu Jizhou Lai +1 位作者 Min Liu Pin Lv 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期1038-1044,共7页
Redundant technology plays an important role in improving the reliability and fault-tolerance of the airborne avionics systems. A Markov state transition model is introduced to the reliability analysis of the redundan... Redundant technology plays an important role in improving the reliability and fault-tolerance of the airborne avionics systems. A Markov state transition model is introduced to the reliability analysis of the redundant inertial navigation system (RINS) in airborne navigation systems. An information processing mechanism based on difference filtering is put forward to strengthen the consistency between the outputs of the equal-precision inertial navigation system (INS). On this basis, the homologous fault monitoring algorithm is designed to realize the homologous fault monitoring of RINS. The simulation is carried out based on the above algorithms, and the results verify the effectiveness of the proposed fault monitoring algorithm based on difference filtering. Research results have good reference value for the configuration and design of RINS in airborne integrated avionics systems. 展开更多
关键词 inertial navigation redundant configuration difference filtering homologous fault monitoring
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部