期刊文献+
共找到541篇文章
< 1 2 28 >
每页显示 20 50 100
Model-based and Fuzzy Logic Approaches to Condition Monitoring of Operational Wind Turbines 被引量:3
1
作者 Philip Cross Xiandong Ma 《International Journal of Automation and computing》 EI CSCD 2015年第1期25-34,共10页
It is common for wind turbines to be installed in remote locations on land or offshore, leading to difficulties in routine inspection and maintenance. Further, wind turbines in these locations are often subject to har... It is common for wind turbines to be installed in remote locations on land or offshore, leading to difficulties in routine inspection and maintenance. Further, wind turbines in these locations are often subject to harsh operating conditions. These challenges mean there is a requirement for a high degree of maintenance. The data generated by monitoring systems can be used to obtain models of wind turbines operating under different conditions, and hence predict output signals based on known inputs. A model-based condition monitoring system can be implemented by comparing output data obtained from operational turbines with those predicted by the models, so as to detect changes that could be due to the presence of faults. This paper discusses several techniques for model-based condition monitoring systems: linear models, artificial neural networks, and state dependent parameter "pseudo" transfer functions.The models are identified using supervisory control and data acquisition(SCADA) data acquired from an operational wind firm. It is found that the multiple-input single-output state dependent parameter method outperforms both multivariate linear and artificial neural network-based approaches. Subsequently, state dependent parameter models are used to develop adaptive thresholds for critical output signals. In order to provide an early warning of a developing fault, it is necessary to interpret the amount by which the threshold is exceeded, together with the period of time over which this occurs. In this regard, a fuzzy logic-based inference system is proposed and demonstrated to be practically feasible. 展开更多
关键词 Condition monitoring wind turbines artificial neural network state dependent parameter model fuzzy logic
原文传递
Fire monitoring in coal mines using wireless underground sensor network and interval type-2 fuzzy logic controller 被引量:3
2
作者 Sweta Basu Sutapa Pramanik +2 位作者 Sanghamitra Dey Gautam Panigrahi Dipak Kumar Jana 《International Journal of Coal Science & Technology》 EI 2019年第2期274-285,共12页
From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise c... From the view of underground coal mining safety system, it is extremely important to continuous monitoring of coal mines for the prompt detection of fires or related problems inspite of its uncertainty and imprecise characteristics. Therefore, evaluation and inferring the data perfectly to prevent fire related accidental risk in underground coal mining (UMC) system are very necessary. In the present article, we have proposed a novel type-2 fuzzy logic system (T2FLS) for the prediction of fire intensity and its risk assessment for risk reduction in an underground coal mine. Recently, for the observation of underground coal mines, wireless underground sensor network (WUSN) are being concerned frequently. To implement this technique IT2FLS, main functional components are sensor nodes which are installed in coal mines to accumulate different imprecise environmental data like, temperature, relative humidity, different gas concentrations etc. and these are sent to a base station which is connected to the ground observation system through network. In the present context, a WUSN based fire monitoring system is developed using fuzzy logic approach to enhance the consistency in decision making system to improve the risk chances of fire during coal mining. We have taken Mamdani IT2FLS as fuzzy model on coal mine monitoring data to consider real-time decision making (DM). It is predicted from the simulated results that the recommended system is highly acceptable and amenable in the case of fire hazard safety with compared to the wired and off-line monitoring system for UMC. Legitimacy of the suggested model is prepared using statistical analysis and multiple linear regression analysis. 展开更多
关键词 Type-2 fuzzy logic UNDERGROUND coal mining system MINE environment FIRE and risk monitoring of MINE WIRELESS sensor networks FIRE Intensity
在线阅读 下载PDF
中国区域卫生规划监督与评价的Logic model(逻辑模型)研究 被引量:9
3
作者 雷海潮 张鹭鹭 +2 位作者 马进 龚向光 卞鹰 《中国卫生经济》 北大核心 2002年第10期4-7,共4页
研究的目的是建立中国区域卫生规划的监督与评价体系,推动全国的区域卫生规划工作,采用LogicModel建立了中国区域卫生规划监督与评价的框架和指标体系并对有关实施问题进行了讨论。
关键词 中国 区域卫生规划 logic MODEL 评价指标体系
暂未订购
AN INTELLIGENT TOOL CONDITION MONITORING SYSTEM USING FUZZY NEURAL NETWORKS 被引量:3
4
作者 赵东标 KeshengWang OliverKrimmel 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期169-175,共7页
Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificia... Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities. 展开更多
关键词 tool condition monitoring neural networks fuzzy logic acoustic emission force sensor fuzzy neural networks
在线阅读 下载PDF
Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis 被引量:20
5
作者 Wan Zhang Min-Ping Jia +1 位作者 Lin Zhu Xiao-An Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期782-795,共14页
Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com-... Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions. 展开更多
关键词 Computational intelligence Machinerycondition monitoring Fault diagnosis Neural networkFuzzy logic Support vector machine - Evolutionaryalgorithms
在线阅读 下载PDF
Bio-inspired computational techniques based on advanced condition monitoring 被引量:3
6
作者 Su Liangcheng He Shan +1 位作者 Li Xiaoli Li Xinglin 《Engineering Sciences》 EI 2011年第1期90-96,共7页
The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of t... The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system. 展开更多
关键词 condition monitoring computational intelligence neural networks evolutionary computation fuzzy logic
在线阅读 下载PDF
Intelligent obstacle avoidance algorithm for safe urban monitoring with autonomous mobile drones 被引量:1
7
作者 Didar Yedilkhan Abzal E.Kyzyrkanov +2 位作者 Zarina A.Kutpanova Shadi Aljawarneh Sabyrzhan K.Atanov 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第4期19-36,共18页
The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone swarms.The deployment of intelligent drone swarms offers promising solutions f... The growing field of urban monitoring has increasingly recognized the potential of utilizing autonomous technologies,particularly in drone swarms.The deployment of intelligent drone swarms offers promising solutions for enhancing the efficiency and scope of urban condition assessments.In this context,this paper introduces an innovative algorithm designed to navigate a swarm of drones through urban landscapes for monitoring tasks.The primary challenge addressed by the algorithm is coordinating drone movements from one location to another while circumventing obstacles,such as buildings.The algorithm incorporates three key components to optimize the obstacle detection,navigation,and energy efficiency within a drone swarm.First,the algorithm utilizes a method to calculate the position of a virtual leader,acting as a navigational beacon to influence the overall direction of the swarm.Second,the algorithm identifies observers within the swarm based on the current orientation.To further refine obstacle avoidance,the third component involves the calculation of angular velocity using fuzzy logic.This approach considers the proximity of detected obstacles through operational rangefinders and the target’s location,allowing for a nuanced and adaptable computation of angular velocity.The integration of fuzzy logic enables the drone swarm to adapt to diverse urban conditions dynamically,ensuring practical obstacle avoidance.The proposed algorithm demonstrates enhanced performance in the obstacle detection and navigation accuracy through comprehensive simulations.The results suggest that the intelligent obstacle avoidance algorithm holds promise for the safe and efficient deployment of autonomous mobile drones in urban monitoring applications. 展开更多
关键词 Drone swarms Fuzzy logic Intelligent solution Smart city Urban monitoring
在线阅读 下载PDF
An integrated fuzzy logic and machine learning platform for porosity detection using optical tomography imaging during laser powder bed fusion
8
作者 Osazee Ero Katayoon Taherkhani +1 位作者 Yasmine Hemmati Ehsan Toyserkani 《International Journal of Extreme Manufacturing》 CSCD 2024年第6期562-586,共25页
Traditional methods such as mechanical testing and x-ray computed tomography(CT), for quality assessment in laser powder-bed fusion(LPBF), a class of additive manufacturing(AM),are resource-intensive and conducted pos... Traditional methods such as mechanical testing and x-ray computed tomography(CT), for quality assessment in laser powder-bed fusion(LPBF), a class of additive manufacturing(AM),are resource-intensive and conducted post-production. Recent advancements in in-situ monitoring, particularly using optical tomography(OT) to detect near-infrared light emissions during the process, offer an opportunity for in-situ defect detection. However, interpreting OT datasets remains challenging due to inherent process characteristics and disturbances that may obscure defect identification. This paper introduces a novel machine learning-based approach that integrates a self-organizing map, a fuzzy logic scheme, and a tailored U-Net architecture to enhance defect prediction capabilities during the LPBF process. This model not only predicts common flaws such as lack of fusion and keyhole defects through analysis of in-situ OT data,but also allows quality assurance professionals to apply their expert knowledge through customizable fuzzy rules. This capability facilitates a more nuanced and interpretable model,enhancing the likelihood of accurate defect detection. The efficacy of this system has been validated through experimental analyses across various process parameters, with results validated by subsequent CT scans, exhibiting strong performance with average model scores ranging from 0.375 to 0.819 for lack of fusion defects and from 0.391 to 0.616 for intentional keyhole defects. These findings underscore the model's reliability and adaptability in predicting defects, highlighting its potential as a transformative tool for in-process quality assurance in AM. A notable benefit of this method is its adaptability, allowing the end-user to adjust the probability threshold for defect detection based on desired quality requirements and custom fuzzy rules. 展开更多
关键词 additive manufacturing in-situ monitoring fuzzy logic machine learning laser powder bed fusion quality assurance
在线阅读 下载PDF
An Integrated Approach for Process Control Valves Diagnosis Using Fuzzy Logic
9
作者 Alvaro Luiz G.Carneiro Almir C.S.Porto Jr. 《World Journal of Nuclear Science and Technology》 2014年第3期148-157,共10页
Control valves are widely used in industry to control fluid flow in several applications. In nuclear power systems they are crucial for the safe operation of plants. Therefore, the necessity of improvements in monitor... Control valves are widely used in industry to control fluid flow in several applications. In nuclear power systems they are crucial for the safe operation of plants. Therefore, the necessity of improvements in monitoring and diagnosis methods started to be of extreme relevance, establishing as main goal of the reliability and readiness of the system components. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing to the development of predictive methodologies identifying faults in incipient state. Specially in nuclear power plants, the predictive maintenance contributes to the security factor in order to diagnose in advance the occurrence of a possible failure, preventing severs situations. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR—Pressurized Water Reactor. The maintenance programs are being implemented based on the ability to diagnose modes of degradation and to take measures to prevent incipient failures, improving plant reliability and reducing maintenance costs. The approach described in this paper represents an alternative departure from the conventional qualitative techniques of system analysis. The methodology used in this project is based on signatures analysis, considering the pressure (psi) in the actuator and the stem displacement (mm) of the valve. Once the measurements baseline of the control valve is taken, it is possible to detect long-term deviations during valve lifetime, detecting in advance valve failures. This study makes use of MATLAB language through the “fuzzy logic toolbox” which uses the method of inference “Mamdani”, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). The main goal is to obtain more detailed information contained in the measured data, correlating them to failure situations in the incipient stage. 展开更多
关键词 Process Control Valve Condition monitoring Diagnosis System Fuzzy logic
暂未订购
基于故障逻辑的民机液压状态监控与故障诊断 被引量:1
10
作者 冯蕴雯 潘维煌 +1 位作者 路成 刘佳奇 《系统工程与电子技术》 北大核心 2025年第3期842-854,共13页
当前民用飞机的监测数据难以有效应用于状态监测与故障诊断,限制了其安全性和可靠性的提升。为此,本文提出一种基于液压系统部件设计与监测数据的决策树模型,用于实现液压系统运行状态的监控;同时提出一种基于故障逻辑与运行数据的迁移... 当前民用飞机的监测数据难以有效应用于状态监测与故障诊断,限制了其安全性和可靠性的提升。为此,本文提出一种基于液压系统部件设计与监测数据的决策树模型,用于实现液压系统运行状态的监控;同时提出一种基于故障逻辑与运行数据的迁移学习模型,用于故障诊断与定位,以提升状态监控能力与故障诊断效率。首先,分析液压系统原理,依据机组操作手册(flight crew operating manual,FCOM)额定参数与监测数据建立运行监控指标,采用决策树模型监控液压系统的运行状态;随后通过故障形成条件梳理成逻辑图,结合逻辑图的输入信号参数采集快速存取记录器(quick access recorder,QAR)数据,开发迁移学习模型实现故障诊断与定位。最后以某型国产民机液压低压故障为例,验证了所提方法的应用效果。结果表明,该运行状态监控方法能有效量化液压系统状态,故障诊断方法则能高效识别故障原因。 展开更多
关键词 状态监控 故障诊断与定位 逻辑图 监测参数 迁移学习
在线阅读 下载PDF
基于S7-1200PLC的注塑机监控系统设计 被引量:1
11
作者 徐竟天 黄晨玺 《塑料科技》 北大核心 2025年第3期140-144,共5页
注塑机是将热塑性塑料或热固性材料通过塑料成型模具制成各类塑料制品的关键设备。根据注塑机的工艺流程和控制要求设计基于可编程逻辑控制器(PLC)的监控系统,通过硬件和软件两部分实现自动化控制和实时数据监测。硬件包括S7-1200 PLC... 注塑机是将热塑性塑料或热固性材料通过塑料成型模具制成各类塑料制品的关键设备。根据注塑机的工艺流程和控制要求设计基于可编程逻辑控制器(PLC)的监控系统,通过硬件和软件两部分实现自动化控制和实时数据监测。硬件包括S7-1200 PLC、人机界面(HMI)触摸屏、传感器和执行机构,PLC采集并处理温度、压力和位置等数据,以实现精确控制。软件使用TIA Portal V17进行PLC编程和HMI组态,设计友好的用户界面,实现实时数据显示和参数设置,并具备报警功能。结果表明:该监控系统提高了注塑机的可靠性和稳定性,显著提升了注塑产品的生产效率和产品质量。 展开更多
关键词 注塑机 可编程逻辑控制器 监控系统 触摸屏
原文传递
基于WSN技术的道路交通智能监测系统
12
作者 张华 易丹 江跃龙 《计算机时代》 2025年第1期46-52,共7页
为满足道路交通管理需求,研究设计了基于WSN(无线传感器网络)技术的道路交通智能监测系统。硬件包括雷达测速传感器、车辆检测传感器和ZigBee通讯子系统,构建了带唯一标识符的WSN网络,实现数据传输监测。实验显示,该系统在误警率和响应... 为满足道路交通管理需求,研究设计了基于WSN(无线传感器网络)技术的道路交通智能监测系统。硬件包括雷达测速传感器、车辆检测传感器和ZigBee通讯子系统,构建了带唯一标识符的WSN网络,实现数据传输监测。实验显示,该系统在误警率和响应时间上优于传统方法,提升了监测精度和实时性,验证了其在实际应用中的性能。 展开更多
关键词 WSN技术 道路交通 智能监测 TK8620无线终端芯片 MSP430F149微控制器 WSN组网逻辑 传输监测
在线阅读 下载PDF
遥感时空知识图谱驱动的自然资源要素变化图斑智能净化 被引量:3
13
作者 李彦胜 钟振宇 +5 位作者 孟庆祥 毛之典 党博 王涛 冯苑君 张永军 《地球信息科学学报》 北大核心 2025年第2期350-366,共17页
【目的】随着深度学习技术的发展,遥感影像自然资源要素变化监测能力得到显著提高。基于深度学习的变化检测技术善于挖掘遥感影像的低层次语义信息,但在区分土地利用类型变化与非土地利用类型变化(如农作物轮作、水位自然变化、森林自... 【目的】随着深度学习技术的发展,遥感影像自然资源要素变化监测能力得到显著提高。基于深度学习的变化检测技术善于挖掘遥感影像的低层次语义信息,但在区分土地利用类型变化与非土地利用类型变化(如农作物轮作、水位自然变化、森林自然退化等)方面存在局限性。为了保证变化检测的高召回率,深度学习变化检测方法往往产生大量虚警变化图斑,仍需大量人工作业工作量来排除虚警变化图斑。【方法】针对这一问题,本文提出了遥感时空知识图谱驱动的自然资源要素变化图斑净化算法。该方法可以在保持变化图斑高召回率的前提下,尽可能降低变化图斑虚警率,从而提高自然资源要素变化监测效率。为了支撑遥感时空知识图谱智能构建与高效推理,本文设计了顾及时空特性的遥感时空知识图谱本体模式,研发了图数据库内存储运算一体化的GraphGIS工具包。本文提出了基于GraphGIS图数据库原生空间分析的矢量知识抽取技术、基于SkySense视觉大模型高效微调的遥感影像知识抽取技术和基于SeqGPT大语言模型的图斑净化知识抽取技术。在时空本体模式约束下,矢量知识、影像知识和文本知识汇聚形成遥感时空知识图谱。受变化图斑净化业务人工作业方式的启发,本文提出了基于遥感时空知识图谱一阶逻辑推理的变化图斑自动净化技术。为了提升遥感时空知识图谱的并发处理与人机交互核验效率,本文研发了一套遥感时空知识图谱管理服务系统。【结果】针对广东省2024年3—6月自然资源要素变化图斑净化任务,本文方法的存真率达到95.37%、去伪率达到21.82%。【结论】本文提出的自然资源要素变化图斑智能净化算法及系统能够在充分保留真实变化图斑的条件下,可以高效剔除虚警变化图斑,显著提升自然资源要素变化监测作业效率。 展开更多
关键词 时空知识图谱 自然资源要素变化监测 图数据库空间计算 遥感大模型 一阶逻辑推理 遥感影像变化检测 大语言模型 时空智能
原文传递
基于火电机组响应状态的“启动-并网”时长预测方法研究 被引量:1
14
作者 张徐东 段传俊 +3 位作者 吴中杰 李思 王成元 罗明 《山东科学》 2025年第4期130-138,共9页
随着新能源装机规模的快速增加,火电机组在电网调峰方面的作用变得日益显著。快速、准确地预测火电机组“启动-并网”过程时长对调度人员及时调整电网运行状态至关重要。针对目前依赖人为经验预估“启动-并网”时长的问题,提出了一种火... 随着新能源装机规模的快速增加,火电机组在电网调峰方面的作用变得日益显著。快速、准确地预测火电机组“启动-并网”过程时长对调度人员及时调整电网运行状态至关重要。针对目前依赖人为经验预估“启动-并网”时长的问题,提出了一种火电机组“启动-并网”过程时长预测方法。对火电机组“启动-并网”过程进行全面分析,确定各阶段的关键运行参数;通过建立监测模型,判断机组响应状态;通过逻辑计算,实现对机组“启动-并网”过程时长的预测。在“网源平台”上对典型机组进行试点研究的结果表明,该模型能够精确的监测机组“启动-并网”响应状态,并成功预测机组“启动-并网”时长。这一方法为调度人员提供了及时的决策支持,有助于确保电网运行的安全性和稳定性。 展开更多
关键词 火电机组 监测模型 响应状态 逻辑计算 时长预测
在线阅读 下载PDF
代际视域下农村留守老人家庭智能监控生成逻辑、实践困境与可能路径 被引量:5
15
作者 彭青云 《云南民族大学学报(哲学社会科学版)》 北大核心 2025年第3期72-80,共9页
在城乡流动加速的社会变迁中,数字信息技术进入农村留守老人的家庭生活。在数字乡村建设与农村老龄化加速发展的外力驱动,以及农村家庭养老资源匮乏、城乡代际互动需求等内力的牵引下,农村家庭代际互动新媒介——家庭智能监控应运而生,... 在城乡流动加速的社会变迁中,数字信息技术进入农村留守老人的家庭生活。在数字乡村建设与农村老龄化加速发展的外力驱动,以及农村家庭养老资源匮乏、城乡代际互动需求等内力的牵引下,农村家庭代际互动新媒介——家庭智能监控应运而生,成为城乡代际情感传递、代际日常照料、家庭安全监护的有效载体。同时,智能监控下的农村留守老人家庭代际互动也存在养老照料供给不足、代际冲突频发、侵犯老人隐私与代际权力关系逆转等问题。基于此,构建了整合血缘、地缘、社缘熟人关系的农村留守老人家庭智能监控良性运行的可能路径。 展开更多
关键词 代际视域 农村留守老人 智能监控 生成逻辑 实践困境 路径
在线阅读 下载PDF
基于三菱PLC停车场车位监测系统设计的研究 被引量:2
16
作者 程艳 《科技资讯》 2025年第2期50-53,共4页
随着经济社会的发展,汽车成为人们出行中必不可少的交通工具之一。车辆的增加导致随之而来的停车难问题也日益凸显,智能化的停车场车位监控系统也成为必然要求。提出基于三菱可编程逻辑控制器(Programmable Logic Controller,PLC)车位... 随着经济社会的发展,汽车成为人们出行中必不可少的交通工具之一。车辆的增加导致随之而来的停车难问题也日益凸显,智能化的停车场车位监控系统也成为必然要求。提出基于三菱可编程逻辑控制器(Programmable Logic Controller,PLC)车位监测控制系统设计,从控制要求、系统设计、安装过程、软件设计及功能的实现等方面进行介绍,向读者展示停车场车位实时监测的原理,帮助读者理解停车场智能化背后的逻辑。 展开更多
关键词 可编程逻辑控制器 停车场 车位监测 控制系统
在线阅读 下载PDF
可编程逻辑控制器在工业自动化中的应用研究 被引量:1
17
作者 曹为玮 《信息与电脑》 2025年第3期143-145,共3页
可编程逻辑控制器(Programmable Logic Controller,PLC)在工业自动化中至关重要,可以为不同行业提供精确的控制、监控和安全功能。文章首先探讨了工业自动化的定义和意义、PLC的功能和组件;然后重点研究了PLC在工业自动化中的应用,具体... 可编程逻辑控制器(Programmable Logic Controller,PLC)在工业自动化中至关重要,可以为不同行业提供精确的控制、监控和安全功能。文章首先探讨了工业自动化的定义和意义、PLC的功能和组件;然后重点研究了PLC在工业自动化中的应用,具体包括在控制和监测系统、过程控制和安全系统方面的应用;最后讨论了PLC技术的关键进步,包括与物联网和人工智能的集成,以及使用PLC数据分析的预测性维护,从而发挥PLC在提高现代工业环境中运营效率、可靠性和安全性方面的作用。 展开更多
关键词 可编程逻辑控制器 工业自动化 控制和监测系统
在线阅读 下载PDF
声纹检测技术在电力在线监控系统中的应用 被引量:2
18
作者 李梦 李亮亮 张琳玉 《电声技术》 2025年第3期38-40,共3页
为实现电力设备的智能化监控,探索声纹检测技术在电力在线监控系统中的应用。通过小波变换预处理、深度学习提取特征、模糊逻辑优化控制,分析声纹检测技术在电力设备状态监测与故障诊断系统中的应用。实证测试表明,该方法可将电力设备... 为实现电力设备的智能化监控,探索声纹检测技术在电力在线监控系统中的应用。通过小波变换预处理、深度学习提取特征、模糊逻辑优化控制,分析声纹检测技术在电力设备状态监测与故障诊断系统中的应用。实证测试表明,该方法可将电力设备故障预警准确率提高至96.4%,诊断时间缩短至120 ms,响应成功率提升至98.2%,显著提高了系统运行效率和安全性。 展开更多
关键词 声纹检测技术 电力在线监控系统 小波变换 深度学习 模糊逻辑
在线阅读 下载PDF
基于电网能量监测的油浸变压器健康评估系统 被引量:1
19
作者 杨玉磊 戚大为 +1 位作者 戚建文 王成斌 《电气技术》 2025年第8期54-60,69,共8页
变压器频繁故障会导致设备损坏和停电,因此监测变压器健康状态对保证电力可靠性至关重要。本文提出一种低成本实时监测系统,通过评估变压器组件的重要性,选择顶层油温、振动和负载作为关键指标,并采用模糊逻辑方法建立评估系统,无需昂... 变压器频繁故障会导致设备损坏和停电,因此监测变压器健康状态对保证电力可靠性至关重要。本文提出一种低成本实时监测系统,通过评估变压器组件的重要性,选择顶层油温、振动和负载作为关键指标,并采用模糊逻辑方法建立评估系统,无需昂贵传感器即可监测变压器的健康状态。在模拟环境下针对50 kV·A油浸变压器进行场景测试,结果表明,该低成本健康评估系统具有良好的可行性和有效性,能够快速响应变压器状态变化,为电力公司提供实时健康评估数据,有助于及时做出维护决策,从而增强电力系统可靠性。 展开更多
关键词 变压器健康 油浸变压器 实时能量监测 模糊逻辑 健康评估系统 低成本在线监测
在线阅读 下载PDF
基于冷原子吸收法的水体重金属汞自动在线监测设备研制与应用
20
作者 肖雪 许海超 +5 位作者 刘程 李路森 薛航 龙睿 李晨 董慧峪 《净水技术》 2025年第S1期405-413,共9页
【目的】汞是一种挥发性强、神经毒性高,且易产生生物积累效应的人体非必要元素,在自然环境中能够持久存在,为减少汞含量测定从业人员的汞暴露风险,实现重金属汞监测设备的自动化运行。【方法】研究基于冷原子吸收法耦合可编程逻辑控制(... 【目的】汞是一种挥发性强、神经毒性高,且易产生生物积累效应的人体非必要元素,在自然环境中能够持久存在,为减少汞含量测定从业人员的汞暴露风险,实现重金属汞监测设备的自动化运行。【方法】研究基于冷原子吸收法耦合可编程逻辑控制(PLC)技术设计了一款可在线检测且高度自动化的Ⅱ型汞自动在线检测仪,该自动在线检测仪配备了测量软件和远程监控软件,具备自动进样、光谱测量、实时数据传输等功能,可大大减少相关从业人员的汞暴露风险。【结果】依据《汞水质自动在线检测仪技术要求及监测方法》(HJ 926-2017)要求,对汞自动在线监测设备进行了性能检验,检验结果表明:在最佳运行条件下,仪器的示值误差在2%以下,检出限为0.03μg/L,定量下限为0.1μg/L,仪器精密度为2.52%,零点漂移为0.084%,量程漂移为2.85%,离子干扰均在15%以下,加标回收率大于92%,各项技术指标的检验结果均符合HJ 926-2017的要求。【结论】通过设备性能检验说明:基于冷原子吸收法的水体重金属汞自动在线监测设备具有抗干扰能力较强、自动化程度高、灵敏度高、精密度高和运行稳定等诸多优势,可实时检测水质信息,保障居民饮用水安全,满足现代分析工作的要求,可用于受汞污染地区地表水水质状况的长期监控,为实现地表水中汞的自动化监测提供重要的技术支持。 展开更多
关键词 地表水 冷原子吸收法 在线监测 可编程逻辑控制(PLC)
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部