Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely us...Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).展开更多
The large-scale production of high-Ti steels is limited by the formation of Ti-containing oxides or nitrides in steel-slag reactions during continuous casting.These processes degrade mold flux properties,clog submerge...The large-scale production of high-Ti steels is limited by the formation of Ti-containing oxides or nitrides in steel-slag reactions during continuous casting.These processes degrade mold flux properties,clog submerged entry nozzles,form floaters in the molds,and produce various surface defects on the cast slabs.This review summarizes the effects of nonmetallic inclusions on traditional CaO-SiO_(2)-based(CS)mold fluxes and novel CaO-Al_(2)O_(3)-based(CA)low-or non-reactive fluxes containing TiO_(2),BaO,and B_(2)O_(3)additives to avoid undesirable steel,slag,and inclusion reactions,with the aim of providing a new perspective for research and practice related to balancing the lubrication and heat transfer of mold fluxes to promote smooth operation and reduce surface defects on cast slabs.For traditional CS mold flux,although the addition of solvents such as Na_(2)O,Li_(2)O,and B_(2)O_(3)can enhance flowability,steel-slag reactions persist,limiting the effectiveness of CS mold fluxes in high-Ti steel casting.Low-or non-reactive CA mold fluxes with reduced SiO_(2)content are a research focus,where adding other components can significantly change flux characteristics.Replacing CaO with BaO can lower the melting point and inhibit crystallization,allowing the flux to maintain good flowability at low temperatures.Replacing SiO_(2)with TiO_(2)can stabilize the viscosity and enhance heat transfer.To reduce the environmental impact,fluorides are replaced with components such as TiO_(2),B_(2)O_(3),BaO,Li_(2)O,and Na_(2)O for F-frce mold fluxes with similar lubrication,crystallization,and heat-transfer effects.When TiO_(2)replaces CaF_(2),it stabilizes the viscosity and enhances the heat conductivity,forming CaTiO_(3)and CaSiTiO_(5)phases instead of cuspidine to control crystallization.B_(2)O_(3)lowers the melting point and suppresses crystallization,forming phases such as Ca_(3)B_(2)O_(6)and Ca_(11)Si_(4)B_(2)O_(22).BaO introduces non-bridging oxygen to reduce viscosity and ensure flux flowability at low temperatures.However,further studies are required to determine the optimal mold flux compositions corresponding to the steel grades and the interactions between the various components of the mold flux.In the future,the practical application of new mold fluxes for high-Ti steel will become the focus of further verification to achieve a balance between lubrication and heat transfer,which is expected to minimize the occurrence of casting problems and slab defects.展开更多
In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experime...In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.展开更多
Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulatin...Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulating material to ensure good reliability.Flow-front merging usually occurs during the molding process,and air is then trapped under the chip,which can form voids in the molded product.The void under the chip may cause stability and reliability problems.However,the flow process is unobservable during the transfer molding process.The engineer can only check for voids in the molded product after the process is complete.Previous studies have used fluid visualization experiments and developed computational fluid dynamics simulation tools to investigate this issue.However,a critical gap remains in establishing a comprehensive three-dimensional model that integrates two-phase flow,accurate venting settings,and fluid surface tension for molded underfill void evaluation—validated by experimental fluid visualization.This study aims to address this gap in the existing literature.In this study,a fluid visualization experiment was designed to simulate the transfer molding process,allowing for the observation of flow-front merging and void formation behaviors.For comparison,a three-dimensional mold flow analysis was also performed.It was found that the numerical simulation of the trapped air compression process under the chip was more accurate when considering the capillary force.The effect of design factors is evaluated in this paper.The results show that the most important factors for void size are fluid viscosity,the gap height under the chip,transfer time,contact angle between the fluid and the contact surfaces,and transfer pressure.Specifically,a smaller gap height beneath the chip aggravates void formation,while lower viscosity,extended transfer time,reduced contact angle,and increased transfer pressure are effective in minimizing void size.The overall results of this study will be useful for product and process design in selecting appropriate solutions for IC packaging,particularly in the development of void-free molded-underfill flip-chip packages.These findings support the optimization of industrial packaging processes in semiconductor manufacturing by guiding material selection and process parameters,ultimately enhancing package reliability and yield.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
Sorghum is an important cereal crop for smallholder farmers’ food security in many countries in West Africa. However, its production has stagnated due to several factors, such as anthracnose and grain molds. Thus, a ...Sorghum is an important cereal crop for smallholder farmers’ food security in many countries in West Africa. However, its production has stagnated due to several factors, such as anthracnose and grain molds. Thus, a study was conducted to identify local germplasms that combine high grain yield and resistance to anthracnose and grain molds under Senegalese environments. A set of 256 genotypes was assessed at Sefa, Sinthiou and Kolda research stations using an incomplete blocks design with two replications. Agro-morphological and phytopathological data were collected. The results revealed a huge phenotypic variation between the genotypes for all traits. The flowering time varied from 43 to 126 days after sowing, while the panicle length varied from 10 to 60 cm. The genotypes were generally more productive at Sinthiou (1653 Kg ha−1) compared to Kolda (164 kg ha−1) research stations. The disease parameters were significantly and positively associated, while the flowering time was strongly and positively associated to grain mold score. The genotypes were classified into three groups with plant height, panicle diameter and length, flowering time and grain mold score as the most discriminating parameters. The genotypes belonging to cluster 3, in addition of being more productive and more resistant to grain mold and anthracnose, have longer panicles. These genotypes present promising prospects for inclusion in breeding programs focused on advancing sorghum yield and disease resistance in Senegal.展开更多
This paper reviews the research progress on mold detection technologies in milk and dairy products,including rapid test sheet methods,molecular biological detection techniques,metabolomics detection techniques,enzyme-...This paper reviews the research progress on mold detection technologies in milk and dairy products,including rapid test sheet methods,molecular biological detection techniques,metabolomics detection techniques,enzyme-linked immunosorbent assay(ELISA),and microbial rapid photoelectric detection systems,aiming to provide optimal choices for mold detection.展开更多
A coupled computational model of molten steel within the mold was developed,encompassing electromagnetic fields,fluid flow,heat transfer,shell formation,stress,and strain.The model was verified through comparison with...A coupled computational model of molten steel within the mold was developed,encompassing electromagnetic fields,fluid flow,heat transfer,shell formation,stress,and strain.The model was verified through comparison with plant measurements,showing reasonable agreement in electromagnetic field distribution,solidification endpoint,and shell thickness.Results indicate that coordinating the submerged entry nozzle(SEN)and mold electromagnetic stirring(M-EMS)effectively regulates the solidification quality of the initial shell.Adjusting M-EMS current frequency changes the impact position of the molten steel jet from the four-port SEN,while increasing current intensity reduces the jet impact intensity.Adjusting the M-EMS parameters can enhance the initial shell uniformity.Furthermore,in areas directly impacted by the steel jet from the four-port SEN,a relationship between brittle temperature range(BTR)width and total mechanical strain was found,and the larger the BTR width,the smaller the corresponding total mechanical strain.The BTR width provides a discriminant method to avoid hot tearing.Appropriate M-EMS parameters are obtained and applied,and the plant trials show a significant improvement in hot tearing near the surface of round blooms.展开更多
Interstitial oxygen(O)contamination remains a substantial challenge for metal injection molding(MIM)of titanium alloys.Herein,this critical problem is successfully addressed by regulating the thermal debinding tempera...Interstitial oxygen(O)contamination remains a substantial challenge for metal injection molding(MIM)of titanium alloys.Herein,this critical problem is successfully addressed by regulating the thermal debinding temperature and incorporating the oxygen scavenger LaB_(6).Results indicate that the surface oxide layer(with a thickness of(13.4±0.5)nm)of Ti_(6)Al4V powder begins to dissolve into the Ti matrix within the temperature range of 663–775℃.O contamination in MIM Ti alloys can be effectively mitigated by lowering the thermal debinding temperature and adding LaB6powder.As a result of reduced dissolved O content,the slips of mixedanddislocations are effectively accelerated,leading to improved ductility.Moreover,grain refinement,along with the in situ formation of Ti B whiskers and second-phase La_(2)O_(3)particles,enhances the strength of the material.The fabricated MIM Ti6Al4V sample exhibits excellent mechanical properties,achieving an ultimate tensile strength of(967±5)MPa,a yield strength of(866±8)MPa,and an elongation of 21.4%±0.7%.These tensile properties represent some of the best results reported in the literature for MIM Ti_(6)Al4V alloys.This study offers valuable insights into the development of high-performance MIM Ti alloys and other metal materials.展开更多
Continuous casting of high-titanium steels face significant challenges due to steel-flux reactions,which will cause rapid compositional deviations and impair operational stability.A kinetic model to predict real-time ...Continuous casting of high-titanium steels face significant challenges due to steel-flux reactions,which will cause rapid compositional deviations and impair operational stability.A kinetic model to predict real-time mold flux composition evolution by integrating multicomponent mixed-transport-control theory with thermodynamics computing platform was developed in the current study.The model employed a cyclic time-step algorithm to compute thermodynamic equilibrium in reaction layer,mass transfer flux between reaction and bulk layers,and composition updates in reaction and bulk layers.The accuracy of the model was validated by plant trial data.The effect of casting parameters and initial compositions on the evolution of mold flux composition were investigated.The TiO_(2)accumulation and SiO_(2)consumption in mold flux under varying casting parameters was predicted.It was found that higher casting speeds accelerated compositional equilibrium,while the increase of mold flux consumption rates reduced TiO_(2)accumulation.The increase of pool depth resulted in slower consumption and accumulation rates of components like SiO_(2)and TiO_(2),prolonging the time to reach equilibrium.Additionally,the CaO-Al_(2)O_(3)-based flux suppressed the Ti-SiO_(2)reaction for the high-titanium steel continuous casting.However,the CaO-Al_(2)O_(3)-based flux should limited contents of Na_(2)O,MnO,and FeO to prevent additional TiO_(2)accumulation due to Ti-Na_(2)O,Ti-MnO,and Ti-FeO reactions.The model provided a reliable tool for understanding and optimizing the continuous casting process of high-titanium steels.展开更多
Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increase...Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increased when the initial aluminum content increased from 0.76 to 3.85 wt.%.Utilizing the two-film theory,a steel–flux reaction kinetic model controlled by mass transfer was established,which considered the influence of the initial composition on the density of liquid steel and flux.The mass transfer of aluminum in the steel phase was the reaction rate-determining step.It was confirmed that the mass transfer coefficient of Al was 1.87×10^(−4).The predicted results of the kinetic model were consistent and reliable with the experimental results.Thermodynamic equilibrium calculation was performed using FactSage 8.2,which was compared with the steel and flux final composition after 30 min.The content of initial aluminum in the liquid steel played a critical role in the SiO_(2)equilibrium content of the mold flux.In addition,the steel–flux reaction between[Al]and(SiO_(2))occurred with the initial SiO_(2)content in the mold flux lower than 3 wt.%.展开更多
The Resin Infusion or the VARTM (Vacuum Assisted Resin Transfer Molding) process has significant potential to be used to manufacture curved composites. Another way to produce curved or complex geometry is to use 3D pr...The Resin Infusion or the VARTM (Vacuum Assisted Resin Transfer Molding) process has significant potential to be used to manufacture curved composites. Another way to produce curved or complex geometry is to use 3D printers. 3D or FDM (Fused Deposition Modelling) printers are now being used to produce relatively cheaper curved parts using thermoplastics such as PLA. However, the strength and mechanical performance of these parts is limited and can be enhanced if the polymer is reinforced with a type of fiber for instance. Research is being carried out to produce fiber rein-forced thermoplastic composites but that process is expected to be more expensive than the alternative methods such as injection or compression molding. Furthermore, to understand the manufacture of a hybrid composite using thermoplastics, fibers and epoxy resin, research and investigation need to be carried out. In this research</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, there are</span></span></span></span></span><span><span><span><span><span style="font-family:""><span style="font-family:Verdana;"> single-sided, double-sided, reusable, disposable and consumable molds. Most of the molds were created either using an FDM printer or manually. These molds were then used to manufacture flat and curved composite structures via the resin injection process, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> VARTM with epoxy resin system and glass/carbon/flax fiber reinforcement. By replacing the costly metallic molds by significantly cheaper molds, the cost of production was expected to further reduce. Furthermore, using double-sided PLA molds was not expected to be a threat to the overall cost of the composite part in question compared to double-sided matched molds used in compression molding. Shear strength, tensile strength and charpy impact strength of most of the manufactured composite parts were also investigated. The strengths were compared based on the method of mold usage. The results showed that this method is effective for a cheaper production of curved epoxy resin composites. However, the strength of the part will decrease as the curved profile gets more complicated unless the basic resin infusion process is altered.展开更多
Alumina fibers,with an aspect ratio ranging from 9 to 27,were utilized as the reinforcing materials for silica-sol ceramic shell molds,and the impact of different alumina fiber additions on the green bending strength,...Alumina fibers,with an aspect ratio ranging from 9 to 27,were utilized as the reinforcing materials for silica-sol ceramic shell molds,and the impact of different alumina fiber additions on the green bending strength,room-and high-temperature bending strength,and self-weight deformation of ceramic shell molds was investigated.The green bending strength of shell molds is the maximum at an alumina fiber addition amount of 0.2wt.%,reaching 6.20 MPa.Further increases in alumina fiber content do not significantly affect the green bending strength.As the alumina fiber addition amount increases from 0.2wt.% to 1.0wt.%,the bending strength and the resistance to self-weight deformation of the ceramic shell molds at high-temperatures show a pattern of first increase and then decrease.The shell molds after sintering exhibit the highest room-temperature strength of 17.33 MPa and the highest high-temperature strength(18.97 MPa at 1,100℃;17.78 MPa at 1,200℃;and 15.3 MPa at 1,300℃),and the smallest self-weight deformation of 0.022% at 1,000℃ when the alumina fiber addition is 0.6wt.%.The appropriate amount of fibers in the shell mold matrix consume the energy required for crack growth through mechanisms such as bridging and pulling-out,thereby improving the strength of shell molds.In summary,the comprehensive performance of the shell molds is the best when the fiber addition amount is 0.6wt.%.展开更多
[Objectives]To develop methods for the early and rapid detection of tomato gray mold.[Methods]Utilizing the ACTIN gene of Botrytis cinerea as the target,a set of specific primers for loop-mediated isothermal amplifica...[Objectives]To develop methods for the early and rapid detection of tomato gray mold.[Methods]Utilizing the ACTIN gene of Botrytis cinerea as the target,a set of specific primers for loop-mediated isothermal amplification(LAMP)was designed and screened.Subsequently,the reaction system and conditions were optimized to achieve rapid isothermal amplification of B.cinerea.[Results]Through agarose gel electrophoresis and SYBR GreenⅠvisualization analysis,the optimal dosages of BstⅡDNA polymerase and dNTPs,as well as the optimal ratio of internal to external primers,were determined to be 0.6 U/μL,1.25 mmol/L,and 2:1,respectively.The specific detection of B.cinerea was accomplished at 61℃ for 40 min,achieving a sensitivity of 100 ag/μL,which is 106 times greater than that of conventional PCR detection.When this method was applied to the detection of tomato diseases,the detection limit for B.cinerea spores reached 20 spores/mL.Furthermore,the pathogen was detectable in tomato leaves that had been infected for 4 d,despite the absence of visible phenotypic symptoms of gray mold.[Conclusions]This method is suitable for the early,rapid,sensitive,and visual detection of tomato gray mold,thereby offering technical support for its early diagnosis,prevention,and control.展开更多
Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generato...Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generators may require structural reinforcement or repair due to damage.This paper proposes a portable,on-site production method for molds under challenging conditions,where material supply is limited.The method utilizes large format additive manufacturing(LFAM)with recycled composite materials,sourced from end-of-life components and waste,as feedstock.The study investigates the microstructural effects of recycling through shredding techniques,using microscopic imaging.Three potential defense-sector applications are explored,specifically in the aerospace,automotive,and energy industries.Additionally,the influence of key printing parameters,particularly nonparallel plane deposition at a 45-degree angle,on the mechanical behavior of ABS reinforced with 20%glass fiber(GF)is examined.The results demonstrate the feasibility of this manufacturing approach,highlighting reductions in waste material and production times compared to traditional methods.Shorter layer times were found to reduce thermal gradients between layers,thereby improving layer adhesion.While 45-degree deposition enhanced Young's modulus,it slightly reduced interlayer adhesion quality.Furthermore,recycling-induced fiber length reduction led to material degradation,aligning with findings from previous studies.Challenges encountered during implementation included weak part adherence to the print bed and local excess material deposition.Overall,the proposed methodology offers a cost-effective alternative to traditional CNC machining for mold production,demonstrating its potential for on-demand manufacturing in resource-constrained environments.展开更多
基金Key-Area Research and Development Program of Guangdong Province(2023B0909020004)Project of Innovation Research Team in Zhongshan(CXTD2023006)+1 种基金Natural Science Foundation of Guangdong Province(2023A1515011573)Zhongshan Social Welfare Science and Technology Research Project(2024B2022)。
文摘Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).
基金financially supported by the National Natural Science Foundation of China(Nos.52204345 and 52474361)the Scientific Research Innovation Projects of Graduate Student of Jiangsu province,China(No.KYCX24_4184)。
文摘The large-scale production of high-Ti steels is limited by the formation of Ti-containing oxides or nitrides in steel-slag reactions during continuous casting.These processes degrade mold flux properties,clog submerged entry nozzles,form floaters in the molds,and produce various surface defects on the cast slabs.This review summarizes the effects of nonmetallic inclusions on traditional CaO-SiO_(2)-based(CS)mold fluxes and novel CaO-Al_(2)O_(3)-based(CA)low-or non-reactive fluxes containing TiO_(2),BaO,and B_(2)O_(3)additives to avoid undesirable steel,slag,and inclusion reactions,with the aim of providing a new perspective for research and practice related to balancing the lubrication and heat transfer of mold fluxes to promote smooth operation and reduce surface defects on cast slabs.For traditional CS mold flux,although the addition of solvents such as Na_(2)O,Li_(2)O,and B_(2)O_(3)can enhance flowability,steel-slag reactions persist,limiting the effectiveness of CS mold fluxes in high-Ti steel casting.Low-or non-reactive CA mold fluxes with reduced SiO_(2)content are a research focus,where adding other components can significantly change flux characteristics.Replacing CaO with BaO can lower the melting point and inhibit crystallization,allowing the flux to maintain good flowability at low temperatures.Replacing SiO_(2)with TiO_(2)can stabilize the viscosity and enhance heat transfer.To reduce the environmental impact,fluorides are replaced with components such as TiO_(2),B_(2)O_(3),BaO,Li_(2)O,and Na_(2)O for F-frce mold fluxes with similar lubrication,crystallization,and heat-transfer effects.When TiO_(2)replaces CaF_(2),it stabilizes the viscosity and enhances the heat conductivity,forming CaTiO_(3)and CaSiTiO_(5)phases instead of cuspidine to control crystallization.B_(2)O_(3)lowers the melting point and suppresses crystallization,forming phases such as Ca_(3)B_(2)O_(6)and Ca_(11)Si_(4)B_(2)O_(22).BaO introduces non-bridging oxygen to reduce viscosity and ensure flux flowability at low temperatures.However,further studies are required to determine the optimal mold flux compositions corresponding to the steel grades and the interactions between the various components of the mold flux.In the future,the practical application of new mold fluxes for high-Ti steel will become the focus of further verification to achieve a balance between lubrication and heat transfer,which is expected to minimize the occurrence of casting problems and slab defects.
基金supported by the National Natural Science Foundation of China(No.52474396 and 52175284)the National Key Research and Development Program of China(Grant No.2022YFB3404201)。
文摘In order to investigate the effect of die wall thickness on morphologies of defect band,a stepped mold with a wall thickness of 5 mm,4 mm,3 mm,2 mm,and 1 mm was designed to carry out high pressure die casting experiments with AlSi10 MgMn alloy.For castings with wall thickness of 2-4 mm,the ratio of the mean defect band width(w)and mean grain size(d)in the defect band(w/d)ranges 7-18,while it increases to 24.47 for the 5 mm-thick casting.This difference is related with the filling speed and the distribution of externally solidified crystals(ESCs).The mold flow analysis indicates that the filling speed decreases from 25.41 m·s^(-1)to 11.07 m·s^(-1)when wall thickness increases from 2 mm to 5 mm.Due to the decreasing filling speed along the wall thickness,ESCs gradually diffuse from the center to the defect band,which keep the shear strength in the defect band at a high-level during filling.Meanwhile,the shear strength generated during the filling also decreases as the shear rate drops.Finally,the defect bands in the 5 mm-thick region become widen and indistinct,and the porosity is as high as 5.25%.
文摘Flip-chip technology is widely used in integrated circuit(IC)packaging.Molded underfill transfer molding is the most common process for these products,as the chip and solder bumps must be protected by the encapsulating material to ensure good reliability.Flow-front merging usually occurs during the molding process,and air is then trapped under the chip,which can form voids in the molded product.The void under the chip may cause stability and reliability problems.However,the flow process is unobservable during the transfer molding process.The engineer can only check for voids in the molded product after the process is complete.Previous studies have used fluid visualization experiments and developed computational fluid dynamics simulation tools to investigate this issue.However,a critical gap remains in establishing a comprehensive three-dimensional model that integrates two-phase flow,accurate venting settings,and fluid surface tension for molded underfill void evaluation—validated by experimental fluid visualization.This study aims to address this gap in the existing literature.In this study,a fluid visualization experiment was designed to simulate the transfer molding process,allowing for the observation of flow-front merging and void formation behaviors.For comparison,a three-dimensional mold flow analysis was also performed.It was found that the numerical simulation of the trapped air compression process under the chip was more accurate when considering the capillary force.The effect of design factors is evaluated in this paper.The results show that the most important factors for void size are fluid viscosity,the gap height under the chip,transfer time,contact angle between the fluid and the contact surfaces,and transfer pressure.Specifically,a smaller gap height beneath the chip aggravates void formation,while lower viscosity,extended transfer time,reduced contact angle,and increased transfer pressure are effective in minimizing void size.The overall results of this study will be useful for product and process design in selecting appropriate solutions for IC packaging,particularly in the development of void-free molded-underfill flip-chip packages.These findings support the optimization of industrial packaging processes in semiconductor manufacturing by guiding material selection and process parameters,ultimately enhancing package reliability and yield.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
文摘Sorghum is an important cereal crop for smallholder farmers’ food security in many countries in West Africa. However, its production has stagnated due to several factors, such as anthracnose and grain molds. Thus, a study was conducted to identify local germplasms that combine high grain yield and resistance to anthracnose and grain molds under Senegalese environments. A set of 256 genotypes was assessed at Sefa, Sinthiou and Kolda research stations using an incomplete blocks design with two replications. Agro-morphological and phytopathological data were collected. The results revealed a huge phenotypic variation between the genotypes for all traits. The flowering time varied from 43 to 126 days after sowing, while the panicle length varied from 10 to 60 cm. The genotypes were generally more productive at Sinthiou (1653 Kg ha−1) compared to Kolda (164 kg ha−1) research stations. The disease parameters were significantly and positively associated, while the flowering time was strongly and positively associated to grain mold score. The genotypes were classified into three groups with plant height, panicle diameter and length, flowering time and grain mold score as the most discriminating parameters. The genotypes belonging to cluster 3, in addition of being more productive and more resistant to grain mold and anthracnose, have longer panicles. These genotypes present promising prospects for inclusion in breeding programs focused on advancing sorghum yield and disease resistance in Senegal.
基金Supported by Research Project on Food Detection Technology Innovation and Standard Integration 2024(YNXM-2024-FW-019).
文摘This paper reviews the research progress on mold detection technologies in milk and dairy products,including rapid test sheet methods,molecular biological detection techniques,metabolomics detection techniques,enzyme-linked immunosorbent assay(ELISA),and microbial rapid photoelectric detection systems,aiming to provide optimal choices for mold detection.
基金supported by Zhongyuan Special Steel Equipment Manufacturing Co.,Ltd.,China.
文摘A coupled computational model of molten steel within the mold was developed,encompassing electromagnetic fields,fluid flow,heat transfer,shell formation,stress,and strain.The model was verified through comparison with plant measurements,showing reasonable agreement in electromagnetic field distribution,solidification endpoint,and shell thickness.Results indicate that coordinating the submerged entry nozzle(SEN)and mold electromagnetic stirring(M-EMS)effectively regulates the solidification quality of the initial shell.Adjusting M-EMS current frequency changes the impact position of the molten steel jet from the four-port SEN,while increasing current intensity reduces the jet impact intensity.Adjusting the M-EMS parameters can enhance the initial shell uniformity.Furthermore,in areas directly impacted by the steel jet from the four-port SEN,a relationship between brittle temperature range(BTR)width and total mechanical strain was found,and the larger the BTR width,the smaller the corresponding total mechanical strain.The BTR width provides a discriminant method to avoid hot tearing.Appropriate M-EMS parameters are obtained and applied,and the plant trials show a significant improvement in hot tearing near the surface of round blooms.
基金financially supported by the National Natural Science Foundation of China(Nos.52274359 and 52304379)Beijing Natural Science Foundation,China(No.L212021)+4 种基金China National Postdoctoral Program for Innovative Talents(No.BX20220034)China Postdoctoral Science Foundation(No.2022M720403)Fundamental Research Funds for the Central Universities,China(Nos.FRFTP-19005C1Z and 00007718)AECC University Research Cooperation Project,China(No.HFZL2021CXY021)State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing,China(Nos.2021Z-03 and 2022Z-14)。
文摘Interstitial oxygen(O)contamination remains a substantial challenge for metal injection molding(MIM)of titanium alloys.Herein,this critical problem is successfully addressed by regulating the thermal debinding temperature and incorporating the oxygen scavenger LaB_(6).Results indicate that the surface oxide layer(with a thickness of(13.4±0.5)nm)of Ti_(6)Al4V powder begins to dissolve into the Ti matrix within the temperature range of 663–775℃.O contamination in MIM Ti alloys can be effectively mitigated by lowering the thermal debinding temperature and adding LaB6powder.As a result of reduced dissolved O content,the slips of mixedanddislocations are effectively accelerated,leading to improved ductility.Moreover,grain refinement,along with the in situ formation of Ti B whiskers and second-phase La_(2)O_(3)particles,enhances the strength of the material.The fabricated MIM Ti6Al4V sample exhibits excellent mechanical properties,achieving an ultimate tensile strength of(967±5)MPa,a yield strength of(866±8)MPa,and an elongation of 21.4%±0.7%.These tensile properties represent some of the best results reported in the literature for MIM Ti_(6)Al4V alloys.This study offers valuable insights into the development of high-performance MIM Ti alloys and other metal materials.
基金support from the National Key R&D Program(Grant No.2023YFB3709900)the National Natural Science Foundation of China(Grant No.U22A20171)+1 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(Grant No.BWLCF202315)the High Steel Center(HSC)at North China University of Technology and University of Science and Technology Beijing,China.
文摘Continuous casting of high-titanium steels face significant challenges due to steel-flux reactions,which will cause rapid compositional deviations and impair operational stability.A kinetic model to predict real-time mold flux composition evolution by integrating multicomponent mixed-transport-control theory with thermodynamics computing platform was developed in the current study.The model employed a cyclic time-step algorithm to compute thermodynamic equilibrium in reaction layer,mass transfer flux between reaction and bulk layers,and composition updates in reaction and bulk layers.The accuracy of the model was validated by plant trial data.The effect of casting parameters and initial compositions on the evolution of mold flux composition were investigated.The TiO_(2)accumulation and SiO_(2)consumption in mold flux under varying casting parameters was predicted.It was found that higher casting speeds accelerated compositional equilibrium,while the increase of mold flux consumption rates reduced TiO_(2)accumulation.The increase of pool depth resulted in slower consumption and accumulation rates of components like SiO_(2)and TiO_(2),prolonging the time to reach equilibrium.Additionally,the CaO-Al_(2)O_(3)-based flux suppressed the Ti-SiO_(2)reaction for the high-titanium steel continuous casting.However,the CaO-Al_(2)O_(3)-based flux should limited contents of Na_(2)O,MnO,and FeO to prevent additional TiO_(2)accumulation due to Ti-Na_(2)O,Ti-MnO,and Ti-FeO reactions.The model provided a reliable tool for understanding and optimizing the continuous casting process of high-titanium steels.
基金support from the National Key R&D Program of China(No.2023YFB3709900)the National Natural Science Foundation of China(Grant No.U22A20171).
文摘Steel–flux reactions involving the high aluminum(0.75–3.85 wt.%Al)low manganese(2.2 wt.%Mn)steel and the 18 wt.%SiO_(2)–18 wt.%Al2O3 mold flux were investigated.The results indicated that the reaction rate increased when the initial aluminum content increased from 0.76 to 3.85 wt.%.Utilizing the two-film theory,a steel–flux reaction kinetic model controlled by mass transfer was established,which considered the influence of the initial composition on the density of liquid steel and flux.The mass transfer of aluminum in the steel phase was the reaction rate-determining step.It was confirmed that the mass transfer coefficient of Al was 1.87×10^(−4).The predicted results of the kinetic model were consistent and reliable with the experimental results.Thermodynamic equilibrium calculation was performed using FactSage 8.2,which was compared with the steel and flux final composition after 30 min.The content of initial aluminum in the liquid steel played a critical role in the SiO_(2)equilibrium content of the mold flux.In addition,the steel–flux reaction between[Al]and(SiO_(2))occurred with the initial SiO_(2)content in the mold flux lower than 3 wt.%.
文摘The Resin Infusion or the VARTM (Vacuum Assisted Resin Transfer Molding) process has significant potential to be used to manufacture curved composites. Another way to produce curved or complex geometry is to use 3D printers. 3D or FDM (Fused Deposition Modelling) printers are now being used to produce relatively cheaper curved parts using thermoplastics such as PLA. However, the strength and mechanical performance of these parts is limited and can be enhanced if the polymer is reinforced with a type of fiber for instance. Research is being carried out to produce fiber rein-forced thermoplastic composites but that process is expected to be more expensive than the alternative methods such as injection or compression molding. Furthermore, to understand the manufacture of a hybrid composite using thermoplastics, fibers and epoxy resin, research and investigation need to be carried out. In this research</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">, there are</span></span></span></span></span><span><span><span><span><span style="font-family:""><span style="font-family:Verdana;"> single-sided, double-sided, reusable, disposable and consumable molds. Most of the molds were created either using an FDM printer or manually. These molds were then used to manufacture flat and curved composite structures via the resin injection process, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> VARTM with epoxy resin system and glass/carbon/flax fiber reinforcement. By replacing the costly metallic molds by significantly cheaper molds, the cost of production was expected to further reduce. Furthermore, using double-sided PLA molds was not expected to be a threat to the overall cost of the composite part in question compared to double-sided matched molds used in compression molding. Shear strength, tensile strength and charpy impact strength of most of the manufactured composite parts were also investigated. The strengths were compared based on the method of mold usage. The results showed that this method is effective for a cheaper production of curved epoxy resin composites. However, the strength of the part will decrease as the curved profile gets more complicated unless the basic resin infusion process is altered.
基金financially supported by the Central Government Guiding Local Science and Technology Development Fund of Henan Province(Z20241471091)the Independent R&D Funds of State Key Laboratory of Advanced Metallurgy(41624025).
文摘Alumina fibers,with an aspect ratio ranging from 9 to 27,were utilized as the reinforcing materials for silica-sol ceramic shell molds,and the impact of different alumina fiber additions on the green bending strength,room-and high-temperature bending strength,and self-weight deformation of ceramic shell molds was investigated.The green bending strength of shell molds is the maximum at an alumina fiber addition amount of 0.2wt.%,reaching 6.20 MPa.Further increases in alumina fiber content do not significantly affect the green bending strength.As the alumina fiber addition amount increases from 0.2wt.% to 1.0wt.%,the bending strength and the resistance to self-weight deformation of the ceramic shell molds at high-temperatures show a pattern of first increase and then decrease.The shell molds after sintering exhibit the highest room-temperature strength of 17.33 MPa and the highest high-temperature strength(18.97 MPa at 1,100℃;17.78 MPa at 1,200℃;and 15.3 MPa at 1,300℃),and the smallest self-weight deformation of 0.022% at 1,000℃ when the alumina fiber addition is 0.6wt.%.The appropriate amount of fibers in the shell mold matrix consume the energy required for crack growth through mechanisms such as bridging and pulling-out,thereby improving the strength of shell molds.In summary,the comprehensive performance of the shell molds is the best when the fiber addition amount is 0.6wt.%.
基金Supported by Central Guiding Local Science and Technology Development Fund Project of Hebei Province(226Z6501G)Science and Technology Program of Hebei Academy of Sciences(23306,24306,25306).
文摘[Objectives]To develop methods for the early and rapid detection of tomato gray mold.[Methods]Utilizing the ACTIN gene of Botrytis cinerea as the target,a set of specific primers for loop-mediated isothermal amplification(LAMP)was designed and screened.Subsequently,the reaction system and conditions were optimized to achieve rapid isothermal amplification of B.cinerea.[Results]Through agarose gel electrophoresis and SYBR GreenⅠvisualization analysis,the optimal dosages of BstⅡDNA polymerase and dNTPs,as well as the optimal ratio of internal to external primers,were determined to be 0.6 U/μL,1.25 mmol/L,and 2:1,respectively.The specific detection of B.cinerea was accomplished at 61℃ for 40 min,achieving a sensitivity of 100 ag/μL,which is 106 times greater than that of conventional PCR detection.When this method was applied to the detection of tomato diseases,the detection limit for B.cinerea spores reached 20 spores/mL.Furthermore,the pathogen was detectable in tomato leaves that had been infected for 4 d,despite the absence of visible phenotypic symptoms of gray mold.[Conclusions]This method is suitable for the early,rapid,sensitive,and visual detection of tomato gray mold,thereby offering technical support for its early diagnosis,prevention,and control.
基金Generalitat Valenciana(GVA)and Spanish Ministry of Science and Innovation(Grant Nos.TED2021-130879 B-C21,CIACIF/2021/286,PID2023-151110OB-I00,and CIPROM/2022/3)to provide funds for conducting experiments and software licensessupported by the National Research Foundation,Prime Minister's Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)programme。
文摘Military missions in hostile environments are often costly and unpredictable,with squadrons sometimes facing isolation and resource scarcity.In such scenarios,critical components in vehicles,drones,and energy generators may require structural reinforcement or repair due to damage.This paper proposes a portable,on-site production method for molds under challenging conditions,where material supply is limited.The method utilizes large format additive manufacturing(LFAM)with recycled composite materials,sourced from end-of-life components and waste,as feedstock.The study investigates the microstructural effects of recycling through shredding techniques,using microscopic imaging.Three potential defense-sector applications are explored,specifically in the aerospace,automotive,and energy industries.Additionally,the influence of key printing parameters,particularly nonparallel plane deposition at a 45-degree angle,on the mechanical behavior of ABS reinforced with 20%glass fiber(GF)is examined.The results demonstrate the feasibility of this manufacturing approach,highlighting reductions in waste material and production times compared to traditional methods.Shorter layer times were found to reduce thermal gradients between layers,thereby improving layer adhesion.While 45-degree deposition enhanced Young's modulus,it slightly reduced interlayer adhesion quality.Furthermore,recycling-induced fiber length reduction led to material degradation,aligning with findings from previous studies.Challenges encountered during implementation included weak part adherence to the print bed and local excess material deposition.Overall,the proposed methodology offers a cost-effective alternative to traditional CNC machining for mold production,demonstrating its potential for on-demand manufacturing in resource-constrained environments.