期刊文献+
共找到4,771篇文章
< 1 2 239 >
每页显示 20 50 100
Single-sideband modulation for dynamically reconfigurable multiwavelength interferometry
1
作者 Leonard Voßgrag Annelie Schiller +4 位作者 Tobias Seyler Markus Fratz Alexander Bertz Daniel Carl Ingo Breunig 《Advanced Photonics Nexus》 2025年第4期119-127,共9页
Single-wavelength interferometry achieves high resolution for smooth surfaces but struggles with rough industrially relevant ones due to limited unambiguous measuring range and speckle effects.Multiwavelength interfer... Single-wavelength interferometry achieves high resolution for smooth surfaces but struggles with rough industrially relevant ones due to limited unambiguous measuring range and speckle effects.Multiwavelength interferometry addresses these challenges using synthetic wavelengths,enabling a balance between extended measurement range and resolution by combining several synthetic wavelengths.This approach holds immense potential for diverse industrial applications,yet it remains largely untapped due to the lack of suitable light sources.Existing solutions are constrained by limited flexibility in synthetic-wavelength generation and slow switching speeds.We demonstrate a light source for multiwavelength interferometry based on electro-optic single-sideband modulation.It reliably generates synthetic wavelengths with arbitrary values from centimeters to meters and switching time below 30 ms.This breakthrough paves the way for dynamic reconfigurable multiwavelength interferometry capable of adapting to complex surfaces and operating efficiently even outside laboratory settings.These capabilities unlock the full potential of multiwavelength interferometry,offering unprecedented flexibility and speed for industrial and technological applications. 展开更多
关键词 digital holography electro-optic modulation interferometry
在线阅读 下载PDF
Orbital XY models in moiré superlattices
2
作者 Yanqi Li Yi-Jie Wang Zhi-Da Song 《Chinese Physics B》 2025年第2期19-29,共11页
Moiré superlattices provide a new platform to engineer various many-body problems. In this work, we consider arrays of quantum dots(QD) realized on semiconductor moiré superlattices with a deep moiré po... Moiré superlattices provide a new platform to engineer various many-body problems. In this work, we consider arrays of quantum dots(QD) realized on semiconductor moiré superlattices with a deep moiré potential. We diagonalize single QD with multiple electrons, and find degenerate ground states serving as local degrees of freedom(qudits) in the superlattice. With a deep moiré potential, the hopping and exchange interaction between nearby QDs become irrelevant,and the direct Coulomb interaction of the density–density type dominates. Therefore, nearby QDs must arrange the spatial densities to optimize the Coulomb energy. When the local Hilbert space has a two-fold orbital degeneracy, we find that a square superlattice realizes an anisotropic XY model, while a triangular superlattice realizes a generalized XY model with geometric frustration. 展开更多
关键词 moirésuperlattices quantum dots XY model
原文传递
Remote picometric acoustic sensing via ultrastable laser homodyne interferometry
3
作者 Yoon-Soo Jang Dong Il Lee +2 位作者 Jaime Flor Flores Wenting Wang Chee Wei Wong 《Advanced Photonics Nexus》 2025年第4期54-62,共9页
Acoustic detection has many applications across science and technology from medicine to imaging and communications.However,most acoustic sensors have a common limitation in that the detection must be near the acoustic... Acoustic detection has many applications across science and technology from medicine to imaging and communications.However,most acoustic sensors have a common limitation in that the detection must be near the acoustic source.Alternatively,laser interferometry with picometer-scale motional displacement detection can rapidly and precisely measure sound-induced minute vibrations on remote surfaces.Here,we demonstrate the feasibility of sound detection up to 100 kHz at remote sites with≈60 m optical path length via laser homodyne interferometry.Based on our ultrastable hertz linewidth laser with 10-15 fractional stability,our laser interferometer achieves 0.5 pm/Hz1/2 displacement sensitivity near 10 kHz,bounded only by laser frequency noise over 10 kHz.Between 140 Hz and 15 kHz,we achieve a homodyne acoustic sensing sensitivity of subnanometer/Pascal across our conversational frequency overtones.The minimal sound pressure detectable over 60 m optical path length is≈2 mPa,with dynamic ranges over 100 dB.With the demonstrated standoff picometric distance metrology,we successfully detected and reconstructed musical scores of normal conversational volumes with high fidelity.The acoustic detection via this precision laser interferometer could be applied to selective area sound sensing for remote acoustic metrology,optomechanical vibrational motion sensing,and ultrasensitive optical microphones at the laser frequency noise limits. 展开更多
关键词 homodyne interferometry displacement measurement acoustic sensing remote sensing ultrastable laser
在线阅读 下载PDF
Ultrafast and precise distance measurement via real-time chirped pulse interferometry
4
作者 Jiawen Zhi Mingyang Xu +3 位作者 Yang Liu Mengyu Wang Chenggang Shao Hanzhong Wu 《Advanced Photonics Nexus》 2025年第2期118-134,共17页
Laser frequency combs,which are composed of a series of equally spaced coherent frequency components,have triggered revolutionary progress in precision spectroscopy and optical metrology.Length/distance is of fundamen... Laser frequency combs,which are composed of a series of equally spaced coherent frequency components,have triggered revolutionary progress in precision spectroscopy and optical metrology.Length/distance is of fundamental importance in both science and technology.We describe a ranging scheme based on chirped pulse interferometry.In contrast to the traditional spectral interferometry,the local oscillator is strongly chirped which is able to meet the measurement pulses at arbitrary distances,and therefore,the dead zones can be removed.The distances can be precisely determined via two measurement steps based on the time-of-flight method and synthetic wavelength interferometry,respectively.To overcome the speed limitation of the optical spectrum analyzer,the spectrograms are stretched and detected by a fast photodetector and oscilloscope and consequently mapped into the time domain in real time.The experimental results indicate that the measurement uncertainty can be well within±2μm,compared with the reference distance meter.The Allan deviation can reach 0.4μm at 4 ns averaging time and 25 nm at 1μs and can achieve 2 nm at 100μs averaging time.We also measured a spinning disk with grooves of different depths to verify the measurement speed,and the results show that the grooves with about 150 m∕s line speed can be clearly captured.Our method provides a unique combination of non-dead zones,ultrafast measurement speed,high precision and accuracy,large ambiguity range,and only one single comb source.This system could offer a powerful solution for field measurements in practical applications in the future. 展开更多
关键词 absolute distance measurement frequency comb chirped pulse interferometry
在线阅读 下载PDF
Emergence of metal-semiconductor phase transition in MX_(2)(M=Ni,Pd,Pt;X=S,Se,Te)moirésuperlattices
5
作者 Jie Li Rui-Zi Zhang +2 位作者 Jinbo Pan Ping Chen Shixuan Du 《Chinese Physics B》 2025年第3期12-18,共7页
Two-dimensional(2D)moirésuperlattices with a small twist in orientation exhibit a broad range of physical properties due to the complicated intralayer and interlayer interactions modulated by the twist angle.Here... Two-dimensional(2D)moirésuperlattices with a small twist in orientation exhibit a broad range of physical properties due to the complicated intralayer and interlayer interactions modulated by the twist angle.Here,we report a metal-semiconductor phase transition in homojunction moirésuperlattices of NiS_(2) and PtTe_(2) with large twist angles based on high-throughput screening of 2D materials MX_(2)(M=Ni,Pd,Pt;X=S,Se,Te)via density functional theory(DFT)calculations.Firstly,the calculations for different stacking configurations(AA,AB and AC)reveal that AA stacking ones are stable for all the bilayer MX_(2).The metallic or semiconducting properties of these 2D materials remain invariable for different stacking without twisting except for NiS_(2) and PtTe_(2).For the twisted configurations,NiS_(2) transfers from metal to semiconductor when the twist angles are 21.79°,27.79°,32.20°and 60°.PtTe_(2) exhibits a similar transition at 60°.The phase transition is due to the weakened d-p orbital hybridization around the Fermi level as the interlayer distance increases in the twisted configurations.Further calculations of untwisted bilayers with increasing interlayer distance demonstrate that all the materials undergo metal-semiconductor phase transition with the increased interlayer distance because of the weakened d-p orbital hybridization.These findings provide fundamental insights into tuning the electronic properties of moirésuperlattices with large twist angles. 展开更多
关键词 moirésuperlattices first-principles calculations metal-semiconductor phase transition
原文传递
Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators
6
作者 Zijian Ma Hongyi Yu 《Chinese Physics B》 2025年第9期519-525,共7页
In moiré-patterned van der Waals structures of transition metal dichalcogenides,correlated insulators can form under integer and fractional fillings,whose transport properties are governed by various quasiparticl... In moiré-patterned van der Waals structures of transition metal dichalcogenides,correlated insulators can form under integer and fractional fillings,whose transport properties are governed by various quasiparticle excitations including holons,doublons and interlayer exciton insulators.Here we theoretically investigate the nearest-neighbor inter-site hoppings of holons and interlayer exciton insulators.Our analysis indicates that these hopping strengths are significantly enhanced compared to that of a single carrier.The underlying mechanism can be attributed to the strong Coulomb interaction between carriers at different sites.For the interlayer exciton insulator consisting of a holon and a carrier in different layers,we have also obtained its effective Bohr radius and energy splitting between the ground and the first-excited states. 展开更多
关键词 correlated insulator holon interlayer exciton insulator moirépattern
原文传递
The influence of position errors on stray light in compensation interferometry
7
作者 Yutong Sun Qiang Cheng +3 位作者 Longxiang Li Xin Zhang Donglin Xue Xuejun Zhang 《Astronomical Techniques and Instruments》 2025年第2期111-118,共8页
Null compensation interferometry is the primary testing method for the manufacture of ultra-high-precision aspheric mirrors.The crosstalk fringes generated by stray light in interferometry can affect accuracy and pote... Null compensation interferometry is the primary testing method for the manufacture of ultra-high-precision aspheric mirrors.The crosstalk fringes generated by stray light in interferometry can affect accuracy and potentially prevent the testing from proceeding normally.Position errors include the decenter error,tilt error,and distance error.During the testing process,position errors will impact the testing accuracy and the crosstalk fringes generated by stray light.To determine the specific impact of position errors,we use the concept of Hindle shell testing of a convex aspheric mirror,and propose the simulation method of crosstalk fringes in null compensation interferometry.We also propose evaluation indices of crosstalk fringes in interferometry and simulate the influence of position errors on the crosstalk fringes.This work aims to help improve the design of compensation interferometry schemes,enhance the feasibility of the design,reduce engineering risks,and improve efficiency. 展开更多
关键词 Compensation interferometry Stray light Multi-beam interference Position error
在线阅读 下载PDF
The Scanning Secondary Moire Method with Atomic-Level Resolution and Large Micrometer-Scale Field of View
8
作者 Yao Zhao Yueyue Xu +4 位作者 Zhanwei Liu Jiangfan Zhou Han Liu Jianxin Nie Jinzhao Zhao 《Acta Mechanica Solida Sinica》 2025年第2期300-308,共9页
The measurement field of view of the conventional transmission electron microscopy(TEM)nano-moiréand scanning transmission electron microscopy(STEM)nano-moirémethods is limited to the hundred-nanometer scale... The measurement field of view of the conventional transmission electron microscopy(TEM)nano-moiréand scanning transmission electron microscopy(STEM)nano-moirémethods is limited to the hundred-nanometer scale,unable to meet the deformation field measurement requirements of micrometer-scale materials such as transistors and micro-devices.This paper proposed a novel measurement method based on scanning secondary moire,which can realize cross-scale deformation field measurement from nanometers to micrometers and solve the problem of insufficient measurement accuracy when using only the TEM moire method.This method utilized the electron wave in the TEM passing through the atomic lattice of two layers of different materials to generate TEM moire.On this basis,the TEM was tuned to the STEM mode,and by adjusting parameters such as the amount of defocusing,magnification,scanning angle,etc.,the electron beam was focused on the position near the interface of the two layers of materials,and at the same time,the scanning line was made approximately parallel to the direction of one of the TEM moire fringes.The scanning secondary moire patterns were generated when the scanning spacing was close to the TEM moire spacing.Through this method,the deformation field,mechanical properties,and internal defects of crystals can be detected by a large field of view with high sensitivity and high efficiency.Compared to traditional methods,the advantages of scanning secondary moire method lie in significantly improving the measurement field of TEM moire and STEM moire methods,realizing the cross-scale visualization measurement from nanometers to micrometers,and possessing atomic-level displacement measurement sensitivity.It can also simplify and efficiently identify dislocations,offering a new method for large-area visualization observation of dislocation density in broad application prospects. 展开更多
关键词 Nano-moire Scanning secondary moire Deformation fields Cross-scale visualization measurement Dislocation density
原文传递
Mapping ultrafast timing jitter in dispersion- managed 89 GHz frequency microcombs via self-heterodyne linear interferometry
9
作者 Wenting Wang Wenzheng Liu +15 位作者 Hao Liu Tristan Melton Alwaleed Aldhafeeri Dong-Il Lee Jinghui Yang Abhinav Kumar Vinod Jinkang Lim Yoon-Soo Jang Heng Zhou Mingbin Yu Patrick Guo-Qiang Lo Dim-Lee Kwong Peter DeVore Jason Chou Ninghua Zhu Chee Wei Wong 《Advanced Photonics Nexus》 2025年第3期120-130,共11页
Laser frequency microcombs provide a series of equidistant,coherent frequency markers across a broad spectrum,enabling advancements in laser spectroscopy,dense optical communications,precision distance metrology,and a... Laser frequency microcombs provide a series of equidistant,coherent frequency markers across a broad spectrum,enabling advancements in laser spectroscopy,dense optical communications,precision distance metrology,and astronomy.Here,we design and fabricate silicon nitride,dispersion-managed microresonators that effectively suppress avoided-mode crossings and achieve close-to-zero averaged dispersion.Both the stochastic noise and mode-locking dynamics of the resonator are numerically and experimentally investigated.First,we experimentally demonstrate thermally stabilized microcomb formation in the microresonator across different mode-locked states,showing negligible center frequency shifts and a broad frequency bandwidth.Next,we characterize the femtosecond timing jitter of the microcombs,supported by precise metrology of the timing phase and relative intensity noise.For the single-soliton state,we report a relative intensity noise of−153.2 dB∕Hz,close to the shot-noise limit,and a quantum-noise–limited timing jitter power spectral density of 0.4 as 2∕Hz at a 100 kHz offset frequency,measured using a self-heterodyne linear interferometer.In addition,we achieve an integrated timing jitter of 1.7 fs±0.07 fs,measured from 10 kHz to 1 MHz.Measuring and understanding these fundamental noise parameters in high clock rate frequency microcombs is critical for advancing soliton physics and enabling new applications in precision metrology. 展开更多
关键词 frequency microcomb timing jitter self-heterodyne linear interferometry dispersion-managed microresonator
在线阅读 下载PDF
Quantum-enhanced interferometry with unbalanced entangled coherent states
10
作者 Jun Tang Zi-Hang Du +2 位作者 Wei Zhong Lan Zhou Yu-Bo Sheng 《Chinese Physics B》 2025年第2期54-62,共9页
We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). ... We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). We identify the optimal phase sensitivity of this scheme by maximizing the quantum Fisher information(QFI) with respect to the BS transmission ratio. Our scheme outperforms the conventional scheme with a balanced BS, particularly in the presence of single-mode photon loss. Notably, our scheme retains quantum advantage in phase sensitivity in the limit of high photon intensity, where the balanced scheme offers no advantage over the classical strategy. 展开更多
关键词 quantum-enhanced interferometry entangled coherent state quantum Fisher information
原文传递
Moiré physics in two-dimensional materials:Novel quantum phases and electronic properties
11
作者 Zi-Yi Tian Si-Yu Li +2 位作者 Hai-Tao Zhou Yu-Hang Jiang Jin-Hai Mao 《Chinese Physics B》 2025年第2期2-17,共16页
Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehen... Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects,leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states,and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field. 展开更多
关键词 two-dimensional quantum material moirésuperlattice flat band strong correlations
原文传递
Correlated physics,charge and magnetic orders in moirékagomésystems
12
作者 Zhaochen Liu Jing Wang 《Chinese Physics B》 2025年第2期31-39,共9页
Moirésystems have emerged as an ideal platform for exploring interaction effects and correlated states.However,most of the experimental systems are based on either triangular or honeycomb lattices.In this study,b... Moirésystems have emerged as an ideal platform for exploring interaction effects and correlated states.However,most of the experimental systems are based on either triangular or honeycomb lattices.In this study,based on the self-consistent Hartree–Fock calculation,we investigate the phase diagram of the kagomélattice in a recently discovered system with two degenerateΓvalley orbitals and strong spin–orbit coupling.By focusing on the filling factors of 1/2,1/3 and 2/3,we identify various symmetry-breaking states by adjusting the screening length and dielectric constant.At the half filling,we discover that the spin–orbit coupling induces Dzyaloshinskii–Moriya interaction and stabilizes a classical magnetic state with 120°ordering.Additionally,we observe a transition to a ferromagnetic state with out-of-plane ordering.In the case of 1/3 filling,the system is ferromagnetically ordered due to the lattice frustration.Furthermore,for 2/3 filling,the system exhibits a pinned droplet state and a 120°magnetic ordered state at weak and immediate coupling strengths,respectively.For the strong coupling case,when dealing with non-integer filling,the system is always charge ordered with sublattice polarization.Our study serves as a starting point for exploring the effects of correlation in moirékagomésystems. 展开更多
关键词 moirékagomésystem Hartree–Fock spin–orbit coupling
原文传递
Valley-selective manipulation of moiréexcitons through optical Stark effect
13
作者 Chenran Xu Jichen Zhou +5 位作者 Zhexu Shan Wenjian Su Kenji Watanabe Takashi Taniguchi Dawei Wang Yanhao Tang 《Chinese Physics B》 2025年第1期14-18,共5页
Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafas... Semiconductor moirésuperlattices provide great platforms for exploring exotic collective excitations.Optical Stark effect,a shift of the electronic transition in the presence of a light field,provides an ultrafast and coherent method of manipulating matter states,which,however,has not been demonstrated in moirématerials.Here,we report the valleyselective optical Stark effect of moiréexcitons in the WSe_(2)/WS_(2)superlattice by using transient reflection spectroscopy.Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiréexcitons,corresponding to pseudomagnetic fields as large as 34 T.Our results provide a route to coherently manipulate exotic states in moirésuperlattices. 展开更多
关键词 optical Stark effect moir´e exciton transient reflection spectroscopy
原文传递
Noise-limited real-time orthogonal polarization spectral interferometry by suppressing phase noise
14
作者 Tianchang Lu Jiarun Zhang +8 位作者 Yudong Cui Yueshu Xu Yusheng Zhang Youjian Song Longhua Tang Zhihua Ding Cuifang Kuang Minglie Hu Xu Liu 《Advanced Photonics Nexus》 2025年第4期12-21,共10页
Laser interferometry with higher resolution,faster update rate,and larger dynamic range is highly anticipated in the exploration of physics frontiers,advanced manufacturing,and precision sensing.Real-time dispersive s... Laser interferometry with higher resolution,faster update rate,and larger dynamic range is highly anticipated in the exploration of physics frontiers,advanced manufacturing,and precision sensing.Real-time dispersive spectral interferometry(DSI)shows promise for high-speed precision measurements,whereas the resolution of subnanometers has not yet been achieved.We present a comprehensive theoretical framework to analyze the limitations of real-time DSI based on the signal-to-noise ratio and data volume.A real-time orthogonal polarization spectral interferometry technique is proposed,which utilizes a pair of interferograms with the pi-phase shift to effectively mitigate the phase noise embedded in real-time spectral envelopes,thereby enabling the precise measurements with subnanometer resolution at megahertz frame rates.The recorded time series data are processed through interpolation,segmentation,time–frequency mapping,and de-enveloping to regain the typical cosine-shaped spectral evolution,followed by a fitting-based phase retrieval method to extract the interference phase.The phase resolution of 1.1 mrad(0.91 as for time delay and 0.3 nm for distance)is obtained at the update rate of 22.2 MHz even under the detection bandwidth of 500 MHz,and can be further enhanced to 0.29 mrad(0.24 as for time delay)after 500 times averaging(∼0.5 MHz).Our approach is validated through periodic phase modulations and applied to measure the rapid damped oscillations of a piezo stage,yielding results consistent with those obtained from a commercial picometer interferometer. 展开更多
关键词 dispersive spectral interferometry femtosecond laser dispersive Fourier transformation precision measurement phase retrieval
在线阅读 下载PDF
Fabrication of two-dimensional van der Waals moiré superlattices
15
作者 Zihao Wan Chao Wang +7 位作者 Hang Zheng Wenna Tang Zihao Fu Weilin Liu Zhenjia Zhou Jun Li Guowen Yuan Libo Gao 《Chinese Physics B》 2025年第4期12-27,共16页
Two-dimensional(2D)van der Waals(vdW)moiré superlattices have attracted significant attention due to their novel physical properties and quantum phenomena.The realization of these fascinating properties,however h... Two-dimensional(2D)van der Waals(vdW)moiré superlattices have attracted significant attention due to their novel physical properties and quantum phenomena.The realization of these fascinating properties,however heavily depends on the quality of the measured moiré superlattices,emphasizing the importance of advanced fabrication techniques.This review provides an in-depth discussion of the methods for fabricating moiré superlattices.It begins with a brief overview of the structure,properties,and potential applications of moiré superlattices,followed by a detailed examination of fabrication techniques,focuses on different kinds of transfer techniques and growth methods,particularly chemical vapor deposition(CVD)method.Finally,it addresses current challenges in fabricating high-quality moiré superlattices and discusses potential directions for future advancements in this field.This review will enhance the understanding of moiré superlattice fabrication and contributing to the continued development of 2D twistronics. 展开更多
关键词 2D materials moirésuperlattices fabrication techniques chemical vapor deposition(CVD)
原文传递
A systematic review of Coda Wave Interferometry technique for evaluating rock behavior properties:From single to multiple perturbations
16
作者 Jie Chen Chao Zhu +3 位作者 Yuanyuan Pu Yichao Rui Bo Liu Derek B.Apel 《Earth Energy Science》 2025年第2期180-192,共13页
Understanding rock behavior is crucial in mine geotechnical engineering to ensure construction efficiency,mitigate rock-related hazards,and promote environmental sustainability.Coda Wave Interferometry(CWI),a non-dest... Understanding rock behavior is crucial in mine geotechnical engineering to ensure construction efficiency,mitigate rock-related hazards,and promote environmental sustainability.Coda Wave Interferometry(CWI),a non-destructive ultrasonic testing method,has been widely employed to assess micro-damage evolution in rocks induced by perturbations in scatterer position,velocity,or source location due to its exceptional sensitivity.However,challenges persist in evaluating cross-scale rock behavior influenced by nonlinear deformation and multi-field interactions under multiple coupled perturbations.A comprehensive review of the perturbation factors affecting rock damage evolution and potential failure mechanisms is essential for presenting available knowledge in a more systematic and structured manner.This review provides an in-depth analysis of the CWI technique,encompassing its origins,theoretical framework,and classical data processing methodologies.Additionally,it explores the diverse applications of CWI in assessing rock behavior under various perturbation factors,including temperature variations,fluid infiltration,and stress conditions,with a particular emphasis on nonlinear deformation and multi-field coupling effects.Furthermore,a novel method for calculating relative velocity changes in coda waves is introduced,enabling a more precise characterization of the entire rock failure process.The study also proposes a cutting-edge concept of ultra-early and refined monitoring and warning technology for mine rock disasters,leveraging the advancements in CWI.Finally,the review highlights the potential future developments of CWI in high-level intelligent mining scenarios,particularly its integration with ambient noise interferometry and microseismic coda wave analysis.This work serves as a valuable reference,contributing to the refinement of CWI applications for assessing complex rock behavior and enhancing the accuracy of rock disaster prediction and early warning systems. 展开更多
关键词 Non-destructive monitoring Coda wave interferometry technique Nonlinear deformation Multi-field coupling Rock disasters warning
在线阅读 下载PDF
Study on the gas field characteristics of SCB plasma using laser interferometry
17
作者 WANG Renbao ZHOU Guojun +1 位作者 MA Qiushi ZHU Shunguan 《Optoelectronics Letters》 2025年第7期407-412,共6页
The semiconductor bridge(SCB)ignites through bridge film discharge,offering advantages such as low ignition energy,high safety,and compatibility with digital logic circuits.The study uses laser interferometry to inves... The semiconductor bridge(SCB)ignites through bridge film discharge,offering advantages such as low ignition energy,high safety,and compatibility with digital logic circuits.The study uses laser interferometry to investigate the gas dynamics of the bridge film after SCB plasma extinction.Interferometric images of the SCB film gas were obtained through a laser interferometry optical path.After the degradation model of digital image processing,clearer images were produced to facilitate analysis and calculation.The results show that the gas temperature at the center of the SCB film reaches a maximum of 1000 K,and the temperature rapidly decreases along the axial direction of the bridge surface to room temperature at 300 K.The maximum diffusion velocity of the plasma is 1.8 km/s.These findings provide critical insights for SCB design and ignition control. 展开更多
关键词 laser interferometry SCB plasma degradation model gas field characteristics digital image processingclearer gas dynamics digital logic circuitsthe semiconductor bridge scb ignites
原文传递
STUDY ON FRACTURE BEHAVIOR OF FERROELECTRIC CERAMICS UNDER COMBINED ELECTROMECHANICAL LOADING BY USING A MOIR(?) INTERFEROMETRY TECHNIQUE 被引量:3
18
作者 方岱宁 刘战伟 +3 位作者 谢惠民 李尚 戴福隆 邴歧大 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第3期263-269,共7页
This paper discusses an in situ observation of fracture behavior around a crack tip in ferroelectric ceramics under combined electromechanical loading by use of a moiré interferometry technique.The deformation fi... This paper discusses an in situ observation of fracture behavior around a crack tip in ferroelectric ceramics under combined electromechanical loading by use of a moiré interferometry technique.The deformation field induced by the electric field and the stress concentration near the crack tip in three-points bending experiments was measured.By analysis of the moiré images it is found that under a constant mechanical load,the electric field almost has no effect on the crack extension in the case that the directions of the poling,electric field and crack extension are perpendicular to each other.When the poling direction is parallel to the crack extension direction and perpendicular to the electric field,the strain decreases faster than that calculated by FEM with and without electrical loading as one goes away from the crack tip.In addition,as the electric field intensity increases,the strain near the crack tip increases,and the strain concentration becomes more significant. 展开更多
关键词 ferroelectric ceramics moiréinterferometry strain concentration CRACK FRACTURE
在线阅读 下载PDF
APPLICATION OF 2-D MOIRE INTERFEROMETRYOF STICKING FILM IN HUMAN TIBIA MEASUREMENT
19
作者 张桂琴 羡若凯 《Transactions of Tianjin University》 EI CAS 1999年第1期68-71,共4页
This paper makes use of the method of testing and measuring the human body tibia by using2-D moire interferometry of sticking film. hased on the J'--y direction moire patterns recorded synchronously by 2-D optical... This paper makes use of the method of testing and measuring the human body tibia by using2-D moire interferometry of sticking film. hased on the J'--y direction moire patterns recorded synchronously by 2-D optical path,the elastic constant,strain and displacement of the tibia are measured.Compared with the electric measuring method the error is samll and the sensitivity is high. 展开更多
关键词 2-D moire interferometry of sticking film elastic constant strain and displacement
在线阅读 下载PDF
EXPERIMENTAL STUDIES ON J-DOMINANCE IN HETEROGENEOUS WELDED JOINTS BY MOIRE INTERFEROMETRY
20
作者 康继东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第2期186-189,共4页
Moire interferometry method is introduced to study the feasibilities of J integral as a plastic singularity parameter at the tip of the notch in the welded joints. The results show that J dominance in most studied cas... Moire interferometry method is introduced to study the feasibilities of J integral as a plastic singularity parameter at the tip of the notch in the welded joints. The results show that J dominance in most studied cases is not validated in v and u displacement fields. Therefore, it can be concluded that J-integral as controlling parameter used to estimate the safety of welded structures is not always valid. 展开更多
关键词 path integrals welded joints moire interfe-rometry J-dominance heterogencity
在线阅读 下载PDF
上一页 1 2 239 下一页 到第
使用帮助 返回顶部