期刊文献+
共找到1,290篇文章
< 1 2 65 >
每页显示 20 50 100
Protection of Sensitive Messages Based on Quadratic Roots of Gaussians: Groups with Complex Modulus
1
作者 Boris S. Verkhovsky 《International Journal of Communications, Network and System Sciences》 2011年第5期287-296,共10页
This paper considers three algorithms for the extraction of square roots of complex integers {called Gaussians} using arithmetic based on complex modulus p + iq. These algorithms are almost twice as fast as the analog... This paper considers three algorithms for the extraction of square roots of complex integers {called Gaussians} using arithmetic based on complex modulus p + iq. These algorithms are almost twice as fast as the analogous algorithms extracting square roots of either real or complex integers in arithmetic based on modulus p, where is a real prime. A cryptographic system based on these algorithms is provided in this paper. A procedure reducing the computational complexity is described as well. Main results are explained in several numeric illustrations. 展开更多
关键词 Complex modulus Computational Efficiency CRYPTOGRAPHIC ALGORITHM Digital Isotopes MULTIPLICATIVE Control Parameter Octadic ROOTS QUARTIC ROOTS Rabin ALGORITHM Reduction of Complexity Resolventa Secure Communication Square ROOTS
在线阅读 下载PDF
Random field characterization of uniaxial compressive strength and elastic modulus for intact rocks 被引量:5
2
作者 Huaxin Liu Xiaohui Qi 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1609-1618,共10页
Rock properties exhibit spatial variabilities due to complex geological processes such as sedimentation,metamorphism, weathering, and tectogenesis. Although recognized as an important factor controlling the safety of ... Rock properties exhibit spatial variabilities due to complex geological processes such as sedimentation,metamorphism, weathering, and tectogenesis. Although recognized as an important factor controlling the safety of geotechnical structures in rock engineering, the spatial variability of rock properties is rarely quantified. Hence, this study characterizes the autocorrelation structures and scales of fluctuation of two important parameters of intact rocks, i.e. uniaxial compressive strength(UCS) and elastic modulus(EM).UCS and EM data for sedimentary and igneous rocks are collected. The autocorrelation structures are selected using a Bayesian model class selection approach and the scales of fluctuation for these two parameters are estimated using a Bayesian updating method. The results show that the autocorrelation structures for UCS and EM could be best described by a single exponential autocorrelation function. The scales of fluctuation for UCS and EM respectively range from 0.3 m to 8.0 m and from 0.3 m to 8.4 m.These results serve as guidelines for selecting proper autocorrelation functions and autocorrelation distances for rock properties in reliability analyses and could also be used as prior information for quantifying the spatial variability of rock properties in a Bayesian framework. 展开更多
关键词 UNIAXIAL COMPRESSIVE strength Elastic modulus Scale of fluctuation AUTOCORRELATION function Spatial variability Bayesian approach
在线阅读 下载PDF
On Some <i>I</i>-Convergent Double Sequence Spaces Defined by a Modulus Function
3
作者 Vakeel. A. Khan Nazneen Khan 《Engineering(科研)》 2013年第5期35-40,共6页
In 2000, Kostyrko, Salat, and Wilczynski introduced and studied the concept of I-convergence of sequences in metric spaces where I is an ideal. The concept of I-convergence has a wide application in the field of Numbe... In 2000, Kostyrko, Salat, and Wilczynski introduced and studied the concept of I-convergence of sequences in metric spaces where I is an ideal. The concept of I-convergence has a wide application in the field of Number Theory, trigonometric series, summability theory, probability theory, optimization and approximation theory. In this article we introduce the double sequence spaces and ,for a modulus function f and study some of the properties of these spaces. 展开更多
关键词 Ideal Filter modulus FUNCTION Lipschitz FUNCTION I-CONVERGENCE Field I-Convergent Monotone and Solid DOUBLE Sequence Spaces
在线阅读 下载PDF
A Predictive Model for the Elastic Modulus of High-Strength Concrete Based on Coarse Aggregate Characteristics
4
作者 LI Liangshun LI Huajian +2 位作者 HUANG Fali YANG Zhiqiang DONG Haoliang 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期121-137,共17页
To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the stre... To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%. 展开更多
关键词 elastic modulus prediction model MINERALOGICAL influence mechanism
原文传递
Effects of SiO_(2)/Al_(2)O_(3)Ratios on Microstructure,Properties and Elastic Modulus of SiO_(2)-Al_(2)O_(3)-CaO-MgO Alkali-Free Glass
5
作者 DONG Peng TENG Zhou +3 位作者 XIE Jun ZHANG Jihong XIONG Dehua CHEN Dequan 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期45-53,共9页
Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes... Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass. 展开更多
关键词 alkali free glass glass network structure VISCOSITY elastic modulus
原文传递
Assessment of Rock Mass Quality and Deformation Modulus by Empirical Methods along Kandiah River, KPK, Pakistan 被引量:1
6
作者 Mian Sohail Akram Kamran Mirza +1 位作者 Muhammad Zeeshan Muhammad Asad Jabbar 《Open Journal of Geology》 2018年第10期947-964,共18页
The pivotal aim of this study is to evaluate the rock mass characterization and deformation modulus. It is vital for rock mass classification to investigate important parameters of discontinuities. Therefore, Rock Mas... The pivotal aim of this study is to evaluate the rock mass characterization and deformation modulus. It is vital for rock mass classification to investigate important parameters of discontinuities. Therefore, Rock Mass Rating (RMR) and Tunneling quality index (Q) classification systems are applied to analyze 22 segments along proposed tunnel routes for hydropower in Kandiah valley, Khyber Pakhtunkhwa, Pakistan. RMR revealed the range of fair to good quality rocks, whereas Q yielded poor to fair quality rocks for investigated segments of the rock mass. Besides, Em values were acquired by empirical equations and computer-aided program RocLab, and both methods presented almost similar variation trend of their results. Hence, the correlations of Em with Q and RMR were carried out with higher values of the regression coefficient. This study has scientific significance to initially understand the rock mass conditions of Kandiah valley. 展开更多
关键词 ROCK Mass Classification RMR and Q Deformation modulus (Em) Empirical EQUATIONS RocLab TUNNEL
暂未订购
Resilient Modulus of Compacted Lateritic Soils from Senegal at OPM Conditions 被引量:1
7
作者 Fatou Samb Meissa Fall +1 位作者 Yves Berthaud Makhaly Ba 《Geomaterials》 2013年第4期165-171,共7页
Repeated load triaxial tests were performed on five compacted gravel lateritic soils collected from different locations in Senegal: Sébikotane, Dougar, Pa Lo, Mont-Rolland and Ngoundiane. The study revealed that ... Repeated load triaxial tests were performed on five compacted gravel lateritic soils collected from different locations in Senegal: Sébikotane, Dougar, Pa Lo, Mont-Rolland and Ngoundiane. The study revealed that resilient modulus decreases with the increase of the bulk and deviatoric stress in constant confining pressure. In addition, resilient modulus increases with the percentage of cement for appreciably equal contents of moisture. This effect tends to stop for higher stress. Besides, correlations were made with some models of resilient modulus such as the Uzan-Witczack model (Witczack and Uzan, 1988 [1]) and the National Highway Research Program (NCHRP) model (2004 [2]). The study confirms that both models give very good results with the best correlations being obtained with the Uzan-Witczack model. 展开更多
关键词 GRAVEL Lateritic SOILS Resilient modulus Mechanical Behaviour Pavement Cyclic TRIAXIAL Test MECHANISTIC Design
在线阅读 下载PDF
Biodegradation of Polymethylmethacrylate Bone Cement May Not Be a Serious Issue in Total Hip Arthroplasty—Retrieval Study for Knoop Hardness and Young’s Modulus
8
作者 Masaaki Maruyama William N. Capello 《Open Journal of Orthopedics》 2013年第6期269-277,共9页
Introduction: To investigate a long-term in vivo deterioration of polymethylmethacrylate (PMMA) bone cement over time, we evaluated retrieved PMMA cement in terms of chemical elements presenting in the cement using en... Introduction: To investigate a long-term in vivo deterioration of polymethylmethacrylate (PMMA) bone cement over time, we evaluated retrieved PMMA cement in terms of chemical elements presenting in the cement using energy dispersive analysis of X-rays;Knoop hardness;and the Young’s modulus using scanning acoustic microscopy. Materials and Methods: For mechanical evaluation, we could neglect the influences of entrapped air bubbles or blood by the use of small specimens. The study was based on thirteen cement samples (six used in the acetabulum and seven in the femur) derived from eight patients (age at revision surgery: mean 72.5, range 68 to 79). All of these samples were Simplex-P?cement. They were functioning well at least ten years after the previous surgery. Duration until revision surgery was ranged 12 to 25 years (average, 17.4 years). The reason for revision was aseptic mechanical loosening. Twenty samples of Simplex-Preg;cement were served by manually mixing as a control. Results: The average of the hardness of the cement was 17.0 ± 1.2 (range, 13.4-20.6). In the control, the hardness was 17.8 ± 1.5 (range, 14.0-24.6). There was no significant difference between these values. The mean of Young’s modulus of the cement was 5.61 ± 0.19 GPa (range, 5.09-6.10). In the control, the modulus was 6.04 ± 0.13 GPa (range, 5.68-6.45). Although the modulus was significantly less than that of the control, there was only 7% decrease in average between twelve and twenty-five years in vivo. Conclusions: Our results suggest that long-term implantation and functional loading in vivo may not be the limiting factor in the mechanical integrity of the bone cement. 展开更多
关键词 POLYMETHYLMETHACRYLATE Bone Cement BIODEGRADATION Total Hip ARTHROPLASTY RETRIEVAL STUDY Knoop Hardness Youngs modulus
暂未订购
Blind adaptive constrained constant modulus algorithms based on unscented Kalman filter for beamforming 被引量:1
9
作者 QIAN Hua-ming LIU Ke +1 位作者 JIAO Zhi-bo MA Jun-da 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2342-2352,共11页
This work proposes constrained constant modulus unscented Kalman filter(CCM-UKF) algorithm and its low-complexity version called reduced-rank constrained constant modulus unscented Kalman filter(RR-CCM-UKF) algorithm ... This work proposes constrained constant modulus unscented Kalman filter(CCM-UKF) algorithm and its low-complexity version called reduced-rank constrained constant modulus unscented Kalman filter(RR-CCM-UKF) algorithm for blind adaptive beamforming. In the generalized sidelobe canceller(GSC) structure, the proposed algorithms are devised according to the CCM criterion. Firstly, the cost function of the constrained optimization problem is transformed to suit the Kalman filter-style state space model. Then, the optimum weight vector of the beamformer can be estimated by using the recursive formulas of UKF. In addition, the a priori parameters of UKF(system and measurement noises) are processed adaptively in the implementation. Simulation results demonstrate that the proposed algorithms outperform the existing methods in terms of convergence speeds, output signal-tointerference-plus-noise ratios(SINRs), mean-square deviations(MSDs) and robustness against steering mismatch. 展开更多
关键词 CONSTRAINED constant modulus criterion BLIND BEAMFORMING unscented KALMAN filter generalized SIDELOBE canceller
在线阅读 下载PDF
On Wavelet Transform General Modulus Maxima Metric for Singularity Classification in Mammograms
10
作者 Tomislav Bujanovic Ikhlas Abdel-Qader 《Open Journal of Medical Imaging》 2013年第1期17-30,共14页
Continuous wavelet transform is employed to detect singularities in 2-D signals by tracking modulus maxima along maxima lines and particularly applied to microcalcification detection in mammograms. The microcalcificat... Continuous wavelet transform is employed to detect singularities in 2-D signals by tracking modulus maxima along maxima lines and particularly applied to microcalcification detection in mammograms. The microcalcifications are modeled as smoothed positive impulse functions. Other target property detection can be performed by adjusting its mathematical model. In this application, the general modulus maximum and its scale of each singular point are detected and statistically analyzed locally in its neighborhood. The diagnosed microcalcification cluster results are compared with health tissue results, showing that general modulus maxima can serve as a suspicious spot detection tool with the detection performance no significantly sensitive to the breast tissue background properties. Performed fractal analysis of selected singularities supports the statistical findings. It is important to select the suitable computation parameters-thresholds of magnitude, argument and frequency range-in accordance to mathematical description of the target property as well as spatial and numerical resolution of the analyzed signal. The tests are performed on a set of images with empirically selected parameters for 200 μm/pixel spatial and 8 bits/pixel numerical resolution, appropriate for detection of the suspicious spots in a mammogram. The results show that the magnitude of a singularity general maximum can play a significant role in the detection of microcalcification, while zooming into a cluster in image finer spatial resolution both magnitude of general maximum and the spatial distribution of the selected set of singularities may lead to the breast abnormality characterization. 展开更多
关键词 Continuous Wavelet Transform Fractal Dimension GENERAL modulus Maximum MICROCALCIFICATION SINGULARITY Smoothed IMPULSE Function
暂未订购
Evaluating the Subgrade Reaction Modulus Variations with Soil Grains Shape in Coarse-Grained Soils Using Genetic Algorithm
11
作者 Pouya Salari Naser Hafezi Moghaddas +1 位作者 Gholam Reza Lashkaripour Mohammad Ghafoori 《Open Journal of Geology》 2020年第2期111-123,共13页
Subgrade reaction modulus (Ks) is one of the main factors in evaluating engineering properties of soils for structural calculations and operations. So, many studies have been performed on the effect of other soil geot... Subgrade reaction modulus (Ks) is one of the main factors in evaluating engineering properties of soils for structural calculations and operations. So, many studies have been performed on the effect of other soil geotechnical parameters on it. One is the effect of soil grains shape on engineering properties of soils, especially Ks. The aim of the present research is to evaluate the effect of soil grains shape on Ks for coarse-grained soils of the west of Mashhad, Iran. For this purpose, 20 PLTs were performed on coarse-grained soils of the west of Mashhad and Ks amounts were determined. Then, flakiness and elongation of the samples measured and changes of Ks by soil grain shape were evaluated. The results showed the strength dependency of Ks to grain forms which an increase in flakiness and elongation indices leads to a decrease in Ks. Therefore, it is necessary to reduce Ks estimated form empirical relationships for flaky and elongated soils. So, by writing a genetic algorithm-based program to find the optimal relationship between the grain shape and the subgrade reaction coefficient, a valid equation for correcting the results from previous empirical equations was presented. 展开更多
关键词 SUBGRADE Reaction modulus (Ks) Flakiness TEST ELONGATION TEST Plate Load TEST (PLT) Genetic Algorithm
在线阅读 下载PDF
On uncertainty of elastic modulus measurements via nanoindentation mechanical testing and conventional triaxial testing
12
作者 Zhidi Wu Eric Edelman +2 位作者 Kathleen Ritterbush Yanbo Wang Brian McPherson 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4700-4714,共15页
Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ... Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling. 展开更多
关键词 Elastic modulus Nanoindentation test Triaxial test Scratch test Uncertainty source Uncertainty quantification Pore space
在线阅读 下载PDF
Enhancement in Elastic Modulus of GFRP Bars by Material Hybridization
13
作者 Dong-Woo Seo Ki-Tae Park +1 位作者 Young-Jun You Hyeong-Yeol Kim 《Engineering(科研)》 2013年第11期865-869,共5页
Fiber reinforced polymer (FRP) reinforcing bars for concrete structure has been extensively investigated for last two decades and a number of FRP bars are commercially available. However, one of shortcomings of the ex... Fiber reinforced polymer (FRP) reinforcing bars for concrete structure has been extensively investigated for last two decades and a number of FRP bars are commercially available. However, one of shortcomings of the existing FRP bars is its low elastic modulus, if glass fibers are used (i.e., GFRP). The main objective of this study using the concept of material hybridization is to develop a viable hybrid FRP bar for concrete structures, especially for marine and port con- crete structures. The purposes of hybridization are to increase the elastic modulus of GFRP bar with acceptable tensile strength. Two types of hybrid GFRP bar were considered in the development: GFRP crust with steel core and GFRP bar with steel wires dispersed over the cross-section. Using E-glass fibers and unsaturated polyester resins, the hybrid GFRP bar samples of 13 mm in diameter were pultruded and tested for tensile properties. The effect of hybridization on tensile properties of GFRP bars was evaluated by comparing the results of tensile test with those of non-hybrid GFRP bars. The results of this study indicated that the elastic modulus of the hybrid GFRP bar was increased by up to 270 percent by the material hybridization. The results of the test and the future recommendations are summarized in this paper. To ensure long-term durability of the hybrid GFRP bars in waterfront structure applications, the individual and combined effects of environmental conditions on hybrid GFRP rebar itself as well as on the interface between rebar and concrete should be accessed. 展开更多
关键词 FRP Glass Fibers TENSILE Test Elastic modulus PULTRUSION MATERIAL HYBRIDIZATION Marine Structures
暂未订购
Elastic modulus affects the growth and differentiation of neural stem cells 被引量:4
14
作者 Xian-feng Jiang Kai Yang +4 位作者 Xiao-qing Yang Ying-fu Liu Yuan-chi Cheng Xu-yi Chen Yue Tu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1523-1527,共5页
It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes a... It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings con- firm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re- sults in a more obvious trend of cell differentiation into astrocytes. 展开更多
关键词 nerve regeneration neural stem cells CARRIER mechanical properties elastic modulus cell differentiation NEURONS IMMUNOFLUORESCENCE ASTROCYTES neural regeneration
暂未订购
Equivalence of <i>K</i>-Functionals and Modulus of Smoothness Generated by a Generalized Dunkl Operator on the Real Line
15
作者 Reem Fahad Al Subaie Mohamed Ali Mourou 《Advances in Pure Mathematics》 2015年第6期367-376,共10页
This paper is intended to establish the equivalence between K-functionals and modulus of smoothness tied to a Dunkl type operator on the real line.
关键词 Differential-Difference Operator GENERALIZED Fourier Transform GENERALIZED Translation Operators K-Functionals modulus of SMOOTHNESS
在线阅读 下载PDF
Enhancement of Elastic Modulus of Epoxy Resin with Carbon Nanotubes
16
作者 Vijay Kumar Srivastava 《World Journal of Nano Science and Engineering》 2011年第1期1-6,共6页
Nanocomposites consisting of multiwall carbon nanotubes (MWCNT) and epoxy resin were produced by a standard calendaring technique. In this study, 3% multiwall carbon nanotube particles were dispersed in epoxy resin by... Nanocomposites consisting of multiwall carbon nanotubes (MWCNT) and epoxy resin were produced by a standard calendaring technique. In this study, 3% multiwall carbon nanotube particles were dispersed in epoxy resin by weight to produce the multiwall carbon nanotubes/epoxy composite. Nanohardness and Raman spectroscopy tests were used to obtain the modulus of elasticity and Raman intensity of MWCNTs/ epoxy resin composite. The results show that the Raman intensity increased with the increase of Raman shift and Raman intensity also affected with the reinforcement of multiwall carbon nanotubes and 1% exposure of laser power. Also, nanohardness increased with increase of modulus of elasticity, which indicated that the toughness of epoxy resin improved with the addition of multiwall carbon nanotubes. 展开更多
关键词 EPOXY RESIN Multiwall Carbon NANOTUBES Nanohardness Raman Spectroscopy modulus of ELASTICITY
在线阅读 下载PDF
A Finite Element Study of Elastic-Plastic Hemispherical Contact Behavior against a Rigid Flat under Varying Modulus of Elasticity and Sphere Radius 被引量:2
17
作者 Prasanta Sahoo Biplab Chatterjee 《Engineering(科研)》 2010年第4期205-211,共7页
The present study considers a finite element analysis of elastic-plastic axi-symmetric hemispherical contact for a frictionless deformable sphere pressed by a rigid flat. The material of the sphere is modeled as elast... The present study considers a finite element analysis of elastic-plastic axi-symmetric hemispherical contact for a frictionless deformable sphere pressed by a rigid flat. The material of the sphere is modeled as elastic perfectly plastic. Analysis is carried out to study the effect of varying modulus of elasticity and sphere radius in wide range of dimensionless interference until the inception of plasticity as well as in plastic range. Results are compared with previous elastic-plastic models. It is found that materials with Young’s modulus to yield strength (E/Y) ratio less than and greater than 300 show strikingly different contact phenomena. The dependency of E on dimensionless interference at which the plastic region fully covers the surface is observed. However with different radius, finite element study exhibits similar elastic-plastic phenomena. 展开更多
关键词 ELASTIC-PLASTIC Contact SPHERE AGAINST FLAT ANSYS modulus of Elasticity SPHERE RADIUS
在线阅读 下载PDF
Analysis of Fatigue Strain, Fatigue Modulus and Fatigue Damage for the Model Formulation of Concrete Based on Strain Life Approach 被引量:1
18
作者 Indra Narayan Yadav Kamal Bahadur Thapa 《Engineering(科研)》 2019年第9期642-674,共33页
Analysis of fatigue strain, fatigue modulus and fatigue damage for the modeling of concrete plays a vital role in the evolution material behaviour which is heterogeneous and anisotropic in nature. The Level-S nonlinea... Analysis of fatigue strain, fatigue modulus and fatigue damage for the modeling of concrete plays a vital role in the evolution material behaviour which is heterogeneous and anisotropic in nature. The Level-S nonlinear fatigue strain curve, fatigue modulus curve, residual strain curve of concrete in compression, tension, flexure and torsional fatigue loading were proposed using strain life approach. The parameters such as physical meaning, the ranges, and the impact on the shape of the curve were discussed. Then, the evolution model of fatigue modulus was established based on the fatigue strain, fatigue modulus, residual strain and secondary strain evolution model. The hypothesis of fatigue modulus is inversely related with the fatigue strain amplitude. The fatigue evolution of concrete damages the bond between material grains, changed the orientation of structure of molecules and affects the elastic properties resulting in the reduction of material stiffness and modulus by formation of microcracking, macro cracking, cracking and finally damage. This paper presents the fatigue strain life model and analysis of fatigue strain, fatigue modulus and damage parameters of concrete which is capable of predicting stiffness degradation, inelastic deformation, and strength reduction under fatigue loading and experimental results were employed for the validation of the theoretical model. 展开更多
关键词 FATIGUE STRAIN LIFE Approach FATIGUE STRAIN EVOLUTION MODEL FATIGUE modulus EVOLUTION MODEL FATIGUE Residual STRAIN EVOLUTION MODEL FATIGUE Secondary STRAIN Stiffness
暂未订购
Block-Based Steganographic Algorithm Using Modulus Function and Pixel-Value Differencing 被引量:1
19
作者 Ahlam K. Al-Dhamari Khalid A. Darabkh 《Journal of Software Engineering and Applications》 2017年第1期56-77,共22页
The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In thi... The main purpose in developing the steganographic algorithms lies in achieving most of the steganographic objectives which comprise the embedding capacity, imperceptibility, security, robustness and complexity. In this paper, we propose a high quality steganographic algorithm using new block structure which makes a good use of both modulus function and pixel-value differencing, namely, MF-PVD. We have made many experiments with various test images from several galleries, such as USC-SIPI and UWATERLOO-LINK. The performance of our proposed algorithm is verified using three different performance metrics which include peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and embedding capacity (EC). Experimental results and comparisons with six pertinent state-of-art algorithms are given to prove the validation and efficiency of the proposed algorithm. 展开更多
关键词 Data Hiding STEGANOGRAPHY WATERMARKING Pixel-Value Differencing modulus FUNCTION Performance Metrics
在线阅读 下载PDF
Settlement of composite foundation with discrete material pile considering modulus change
20
作者 曹文贵 刘海涛 +1 位作者 李翔 张永杰 《Journal of Central South University》 SCIE EI CAS 2008年第S2期8-14,共7页
Based on deeply discussing the deformation mechanism of composite foundation with discrete material pile, firstly, the settlement of composite foundation in rigid foundation conditions was assumed to consist of two pa... Based on deeply discussing the deformation mechanism of composite foundation with discrete material pile, firstly, the settlement of composite foundation in rigid foundation conditions was assumed to consist of two parts, an expanding part and an un-expanding part. Then, in view of the differences of deformation properties between the expanding part and the un-expanding part, the relationships between the pile modulus and the applied load in these two parts were respectively developed. Thirdly, by introducing the above relationships into settlement analysis, a new method to calculate displacement of composite foundation with discrete material pile was proposed by using the multi-stage loading theory and the layer-wise summation approach. This method is effective not only for accounting for the effect of variations of pores on deformation modulus of the pile body in different depths, but also for describing the characteristics of different deformation mechanisms of the pile body with varying depth. Finally, the proposed method was used to a practical composite foundation problem, whose theoretical results were presented and compared to those of other methods. The rationality and feasibility of this method are identified through comparative analysis. 展开更多
关键词 DISCRETE material PILE composite FOUNDATION SETTLEMENT calculation pores DEFORMATION modulus
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部