Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues a...Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.展开更多
Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hyd...Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.展开更多
We consider the questions connected with the approximation of a real continuous 1-periodic functions and give a new proof of the equivalence of the special Boman-Shapiro modulus of continuity with Peetre’s K-function...We consider the questions connected with the approximation of a real continuous 1-periodic functions and give a new proof of the equivalence of the special Boman-Shapiro modulus of continuity with Peetre’s K-functional. We also prove Jackson’s inequality for the approximation by trigonometric polynomials.展开更多
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modu...Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM.展开更多
Lithium-sulfur(Li-S)batteries exhibit exceptional high theoretical energy density.However,their practical application is hindered by premature termination of discharge,which severely limits the discharge capacity and ...Lithium-sulfur(Li-S)batteries exhibit exceptional high theoretical energy density.However,their practical application is hindered by premature termination of discharge,which severely limits the discharge capacity and achievable energy density even at low discharge rates.This contribution identifies blocked mass transfer as the primary limitation through relaxation analysis.Both X-ray computed tomography and finite element simulation manifest that the preferential solid deposition at the working cathode surface obstructs the mass transfer pathway and triggers premature discharge termination.The Thiele modulus of a thick cathode is utilized to elucidate the disparity between electrochemical reaction and mass transfer rates,underscoring internal diffusion limitations as the root cause.This understanding affords a theoretical framework for optimizing cathode structures.By reducing the Thiele modulus,an enhanced energy density of 436 Wh kg^(-1)is achieved in Li-S pouch cells.This work advances the understanding of multi-phase reactions in Li-S batteries and offers insights to electrochemical systems involving multi-phase conversions.展开更多
Bulk modulus is a constant that measures the incompressibility of materials, which can be obtained in high pressure experiment by fitting the equations of state(EOS), like third-order Birch–Murnaghan EOS(BM EOS) and ...Bulk modulus is a constant that measures the incompressibility of materials, which can be obtained in high pressure experiment by fitting the equations of state(EOS), like third-order Birch–Murnaghan EOS(BM EOS) and Vinet EOS. Bulk modulus reflects the intermolecular interaction inside molecular crystals, making it useful for researchers to design novel high pressure materials. This review systematically examines bulk moduli of various molecular crystals, including rare-gas solids, di-atom and triplet-atom molecules, saturated organic molecules, and aromatic organic crystals. Comparisons with ionic crystals are presented, along with an analysis of connections between bulk modulus and crystal structures.展开更多
Porous designs effectively reduce stress shielding in metallic orthopedic implants.However,current porous structures often fail to adequately meet the needs of patients with osteoporosis and low-modulus body regions.T...Porous designs effectively reduce stress shielding in metallic orthopedic implants.However,current porous structures often fail to adequately meet the needs of patients with osteoporosis and low-modulus body regions.This study proposes a sinusoidal-based lattice structure for an ultralow and widely tunable modulus design,aiming to match diverse bone tissue requirements and enhance biomechanical compatibility.Parametric modeling and finite element analysis were used to evaluate the performance of this structure.Results show that,within the design range suitable for bone growth,the elastic modulus of this lattice structure is tunable over a wide range,from 0.09 to 32.67 GPa,outperforming existing porous structures.The lowest value closely matched the minimum mechanical properties of human cancellous bone among porous structures.Moreover,the structure exhibited distinct anisotropic characteristics,allowing for directional design based on mechanical requirements.The structure’s permeability ranged from 1.19×10^(-8) m^(2) to 2.3×10^(-7) m^(2),making it highly compatible with human cancellous bone and meeting the requirements of orthopedic implants.Samples with porosities ranging from 46% to 87% were successfully fabricated using powder bed fusion additive manufacturing,validating the simulation predictions.This tunable low-modulus lattice structure provides a novel approach for developing personalized orthopedic implants,particularly for patients with specialized needs such as osteoporosis,and can potentially enhance biomechanical compatibility and long-term stability.展开更多
The elastic properties of membranes are typically characterized by a few phenomenological parameters,including bending and Gaussian curvature moduli measuring the membrane rigidity against its deformation and topologi...The elastic properties of membranes are typically characterized by a few phenomenological parameters,including bending and Gaussian curvature moduli measuring the membrane rigidity against its deformation and topological change,as well as spontaneous curvature arising from the asymmetry between the two leaflets in the lipid bilayers.Though tether-based and fluctuationbased experiments are commonly utilized to measure the bending modulus,measuring the Gaussian curvature modulus and the spontaneous curvature of the membrane is considered to be much more difficult.In this paper,we study the buckling process of a circular membrane with nonzero spontaneous curvature under compressive stresses.It is found that when the stress exceeds a critical value,the circular membrane will transform from a spherical cap to a buckled shape,with its buckling degree enhanced with the increase of stress until its base is constricted to almost zero.As the stress-strain relationship of the buckled membrane strongly depends on the Gaussian curvature modulus and the spontaneous curvature,we therefore propose a method to determine the Gaussian curvature modulus and the spontaneous curvature simultaneously by measuring its stress-strain relationship during a buckling process.展开更多
As an emerging multifunctional metal with the lowest melting point except for mercury,gallium combines a wide range of metallic and non-metallic elements to form advanced semiconductors critically important in cutting...As an emerging multifunctional metal with the lowest melting point except for mercury,gallium combines a wide range of metallic and non-metallic elements to form advanced semiconductors critically important in cutting-edge technologies.However,due to its low melting point and poor machinability,it is quite difficult to simultaneously characterize gallium’s elastic properties and damping characteristics using conventional methods,which is es-sential in designing and evaluating gallium-based structures.Therefore,developing effective methods to achieve accurate and efficient measurements of Young’s modulus and corresponding internal friction of gallium is of great significance.This letter studies simultaneous measurements of the variations in Young’s modulus and internal friction of gallium at varying temperatures by employing the modified piezoelectric ultrasonic composite oscil-lator technique.Combining the explicit theoretical formulas with the measured resonance and anti-resonance frequencies,it has been discovered that Young’s modulus undergoes an approximately linear decrease as the temperature rises,declining from 83.84 GPa at -70℃ to 79.37 GPa at 20℃.Moreover,like aluminum in the same Group ⅢA of the Periodic Table of Elements and exhibits a grain-boundary internal friction peak,gallium displays a longitudinal internal friction peak at approximately-12°C,with the peak value reaching 1.77×10^(-3).This basic research on gallium’s elastic properties and damping characteristics under low-temperature condi-tions will inspire further explorations of the mechanical properties of a diverse spectrum of low-melting-point functional materials and facilitate applications of gallium-based structures under complex conditions.展开更多
The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis ...The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).展开更多
Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ...Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.展开更多
Re-entrant honeycombs are widely used in safeguard structures due to their geometric simplicity and excellent energy absorption capacities.However,traditional re-entrant honeycombs exhibit insufficient stiffness and s...Re-entrant honeycombs are widely used in safeguard structures due to their geometric simplicity and excellent energy absorption capacities.However,traditional re-entrant honeycombs exhibit insufficient stiffness and stability owing to the lack of internal support.This paper proposes a new hybrid honeycomb by integrating a chiral component inside the re-entrant honeycomb.Since Young's modulus is a key parameter to evaluate the energy absorption performance and stiffness,an analytical model is given to predict the effective Young's modulus of the proposed hybrid honeycomb.It is found that the optimal design scheme is to directly insert a circular ring inside the re-entrant honeycomb.The normalized specific energy absorption(SEA)of the hybrid honeycomb is 95%larger than that of the traditional re-entrant honeycomb.The normalized SEA first increases to a peak value and then decreases with the cell wall thickness.The optimal thickness of the cell wall for the maximum SEA is derived in terms of the geometric configuration of the unit cell.The normalized SEA first decreases to a valley value and then increases with the re-entrant angle.A longer horizontal cell wall results in a smaller normalized SEA.This paper provides a new design method for safeguard structures with high stiffness and energy absorption performance.展开更多
Different from the current measurement methods for Young’s modulus of metal materials,the Young’s modulus of intermetallic compounds(IMCs)was obtained by a non-destructive method based on Brillouin light scattering(...Different from the current measurement methods for Young’s modulus of metal materials,the Young’s modulus of intermetallic compounds(IMCs)was obtained by a non-destructive method based on Brillouin light scattering(BLS)in this paper.The single-phase regions of CoSn,CoSn_(2),Cu_(3)Sn and Cu_(6)Sn_(5) phases required for BLS test were obtained by applying long-term thermal stabilization through adjusting temperature gradient.The volume fractions of the corresponding phases near the solid-liquid interfaces of the samples were 98.3%,94.2%,99.6% and 95.9%,respectively.All the independent elastic coefficients and Young’s moduli of IMCs were obtained by Brillouin scatterometer.The Young’s moduli of CoSn,CoSn_(2) and Cu_(3)Sn and Cu_(6)Sn_(5) phases obtained through the present method are 115.0,101.7,129.9 and 125.6 GPa,respectively,which are in a good agreement with the previous experimental results.Thus,the effectiveness of BLS in measuring the Young’s moduli of IMCs in bulk alloys is confirmed.展开更多
The single-point bending method,based on atomic force microscopy(AFM),has been extensively validated for characterizing the structural mechanical properties of micro-and nanobeams.Nevertheless,the influence of AFM pro...The single-point bending method,based on atomic force microscopy(AFM),has been extensively validated for characterizing the structural mechanical properties of micro-and nanobeams.Nevertheless,the influence of AFM probe loading and positioning has yet to be subjected to comprehensive investigation.This paper proposes a novel bending-test method based on sequential loading points,in which a series of evenly distributed loads are applied along the length of the central axis on the upper surface of the cantilever.The preliminary measured values of Young’s modulus for an unknown alloy material were 193,178,and 176 GPa,exhibiting a considerable degree of dispersion.An algorithm for self-correction of the positioning error was developed,and this resulted in a positioning error of 53 nm and a final converged Young’s modulus of 161 GPa.展开更多
Continuity is the foremost defining characteristic of Chinese civilization.It ensures that the evolution of this civilization respects the fine traditions and stays on the right course throughout its creative course.M...Continuity is the foremost defining characteristic of Chinese civilization.It ensures that the evolution of this civilization respects the fine traditions and stays on the right course throughout its creative course.Meanwhile,creativity imparts ceaseless vitality to this civilization,serving as the intrinsic propulsive force that fuels its evolution.The rise of Song Studies marks one of the symbolic events in the transformation in the Chinese ideological and cultural realm.It encapsulates the dialectical unity between continuity and creativity that characterizes Chinese civilization.Song Studies adhere to the traditional classic interpretations,center the core values around“benevolence,”and pursue the way of sages,which reflect the continuity of Chinese civilization.They also embody creativity.This is manifested in the emergence of a new academic spirit that emphasizes the seeking of truth and reason,a new academic ethos that involves questioning classics in the process of their dissemination and interpreting them with one’s own insight,as well as the fusion of philosophical speculation with social practice.Conducting an integrated analysis of the defining characteristics of Chinese civilization and the rise of Song Studies helps us gain a thorough understanding of the dialectical unity between the continuity and creativity of Chinese civilization through the interactions between history and reality.It also enables us to effectively address the relationship between inheritance and transformation,as well as between maintaining core values and pursuing creativity throughout its ongoing development.展开更多
BACKGROUND Children with critical acute abdominal conditions often undergo intestinal stoma surgery.AIM To explore the impact of a visual mobile terminal-based extended care model on caregiver competence for children ...BACKGROUND Children with critical acute abdominal conditions often undergo intestinal stoma surgery.AIM To explore the impact of a visual mobile terminal-based extended care model on caregiver competence for children with enterostomies.METHODS One hundred twenty children with enterostomies and their caregivers in a children's hospital in Beijing were divided into a control group and a study group.The control group(60 cases)received traditional telephone follow-up for continuity of care,while the study group(60 cases)used a visualization mobile terminal-based care model.The incidence of stoma-related complications,caregiver burden scale,and competence scores of children with stoma were compared between the two groups.RESULTS The primary caregiver burden score in the study group(37.22±3.17)was significantly lower than that in the control group(80.00±4.47),and the difference was statistically significant(P<0.05).Additionally,the caregiving ability score of the study group(172.08±3.49)was significantly higher than that of the control group(117.55±4.28;P<0.05).The total incidence of complications in the study group(11.7%,7/60)was significantly lower compared to the control group(33.3%,20/60;χ2=8.086,P=0.004).CONCLUSION The visual mobile terminal-based care model reduces caregiver burden,improves home care ability,lowers the incidence of complications and readmission rates,and supports successful second-stage reduction surgery for children with enterostomies.展开更多
Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the in...Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the influences of particles in the same chain and the particles in all adjacent chains, the traditional magnetic dipole model of the magnetorheological elastomers is modified. The influence of the ratio of the distance etween adjacent chains to the distance between adjacent particles in a chain on the magnetic induced shear odulus is quantitatively studied. When the ratio is large, the multi-chain model is compatible with the single chain model, but when the ratio is small, the difference of the two models is significant and can not be neglected. Making certain the size of the columns and the distance between adjacent columns, after constructing the computational model of BCT structures, the mechanical property of the magnetorheological elastomers composed of columnar structures is analyzed. Results show that, conventional point dipole model has overrated the magnetic-induced shear modulus of the magnetorheological elastomers. From the point of increasing the magnetic-induced shear modulus, when the particle volume fraction is small, the chain-like structure exhibits better result than the columnar structure, but when the particle volume fraction is large,the columnar structure will be better.展开更多
The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accura...The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1201302 and 2021YFA1201300)the National Natural Science Foundation of China(Nos.52303033,52173029)+1 种基金Shanghai Sailing Program(No.23YF1400400)the Natural Science Foundation of Shanghai(No.21ZR1400500).
文摘Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.
基金Australian Research Council Linkage Program(LP200301404)for sponsoring this researchthe financial support provided by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology,SKLGP2021K002)National Natural Science Foundation of China(52374101,32111530138).
文摘Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.
文摘We consider the questions connected with the approximation of a real continuous 1-periodic functions and give a new proof of the equivalence of the special Boman-Shapiro modulus of continuity with Peetre’s K-functional. We also prove Jackson’s inequality for the approximation by trigonometric polynomials.
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金financial support from the Chilean National Agency for Research and Development(ANID),National Doctorate No.21212028financial support from ANID,FONDECYT Regular Research Project No.1221793.
文摘Rubberized concrete is one of the most studied applications of discarded tires and offers a promising approach to developing materials with enhanced properties.The rubberized concrete mixture results in a reduced modulus of elasticity and a reduced compressive and tensile strength compared to traditional concrete.This study employs finite element simulations to investigate the elastic properties of rubberized mortar(RuM),considering the influence of inclusion stiffness and interfacial debonding.Different homogenization schemes,including Voigt,Reuss,and mean-field approaches,are implemented using DIGIMAT and ANSYS.Furthermore,the influence of the interfacial transition zone(ITZ)between mortar and rubber is analyzed by periodic homogenization.Subsequently,the influence of the ITZ is examined through a linear fracture analysis with the stress intensity factor as a key parameter,using the ANSYS SMART crack growth tool.Finally,a non-linear study in FEniCS is carried out to predict the strength of the composite material through a compression test.Comparisons with high density polyethylene(HDPE)and gravel inclusions show that increasing inclusion stiffness enhances compressive strength far more effectively than simply improving the mortar/rubber bond.Indeed,when the inclusions are much softer than the surrounding matrix,any benefit gained on the elastic modulus or strength from stronger interfacial adhesion becomes almost negligible.This study provide numerical evidence that tailoring the rubber’s intrinsic stiffness—not merely strengthening the rubber/mortar interface—is a decisive factor for improving the mechanical performance of RuM.
基金supported by the National Key Research and Development Program of China(2024YFE0209500)Relevant National Projects,the National Natural Science Foundation of China(22409116)+1 种基金the Seed Fund of Shanxi Research Institute for Clean Energy(SXKYJF015)the Shuimu Tsinghua Scholar Program of Tsinghua University。
文摘Lithium-sulfur(Li-S)batteries exhibit exceptional high theoretical energy density.However,their practical application is hindered by premature termination of discharge,which severely limits the discharge capacity and achievable energy density even at low discharge rates.This contribution identifies blocked mass transfer as the primary limitation through relaxation analysis.Both X-ray computed tomography and finite element simulation manifest that the preferential solid deposition at the working cathode surface obstructs the mass transfer pathway and triggers premature discharge termination.The Thiele modulus of a thick cathode is utilized to elucidate the disparity between electrochemical reaction and mass transfer rates,underscoring internal diffusion limitations as the root cause.This understanding affords a theoretical framework for optimizing cathode structures.By reducing the Thiele modulus,an enhanced energy density of 436 Wh kg^(-1)is achieved in Li-S pouch cells.This work advances the understanding of multi-phase reactions in Li-S batteries and offers insights to electrochemical systems involving multi-phase conversions.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0708502 and 2023YFA1406200)the National Natural Science Foundation of China (Grant No. 22022101)。
文摘Bulk modulus is a constant that measures the incompressibility of materials, which can be obtained in high pressure experiment by fitting the equations of state(EOS), like third-order Birch–Murnaghan EOS(BM EOS) and Vinet EOS. Bulk modulus reflects the intermolecular interaction inside molecular crystals, making it useful for researchers to design novel high pressure materials. This review systematically examines bulk moduli of various molecular crystals, including rare-gas solids, di-atom and triplet-atom molecules, saturated organic molecules, and aromatic organic crystals. Comparisons with ionic crystals are presented, along with an analysis of connections between bulk modulus and crystal structures.
基金supported by National Key R&D Program of China(Grant No.2022YFB4600500)Fundamental Research Funds for the Central Universities,and the Program for Innovation Team of Shaanxi Province(Grant No.2023-CX-TD-17).
文摘Porous designs effectively reduce stress shielding in metallic orthopedic implants.However,current porous structures often fail to adequately meet the needs of patients with osteoporosis and low-modulus body regions.This study proposes a sinusoidal-based lattice structure for an ultralow and widely tunable modulus design,aiming to match diverse bone tissue requirements and enhance biomechanical compatibility.Parametric modeling and finite element analysis were used to evaluate the performance of this structure.Results show that,within the design range suitable for bone growth,the elastic modulus of this lattice structure is tunable over a wide range,from 0.09 to 32.67 GPa,outperforming existing porous structures.The lowest value closely matched the minimum mechanical properties of human cancellous bone among porous structures.Moreover,the structure exhibited distinct anisotropic characteristics,allowing for directional design based on mechanical requirements.The structure’s permeability ranged from 1.19×10^(-8) m^(2) to 2.3×10^(-7) m^(2),making it highly compatible with human cancellous bone and meeting the requirements of orthopedic implants.Samples with porosities ranging from 46% to 87% were successfully fabricated using powder bed fusion additive manufacturing,validating the simulation predictions.This tunable low-modulus lattice structure provides a novel approach for developing personalized orthopedic implants,particularly for patients with specialized needs such as osteoporosis,and can potentially enhance biomechanical compatibility and long-term stability.
基金the financial support from the National Natural Science Foundation of China under Grant Nos.12174323 and 12474199Fundamental Research Funds for Central Universities of China under Grant No.20720240144(RM)111 project B16029。
文摘The elastic properties of membranes are typically characterized by a few phenomenological parameters,including bending and Gaussian curvature moduli measuring the membrane rigidity against its deformation and topological change,as well as spontaneous curvature arising from the asymmetry between the two leaflets in the lipid bilayers.Though tether-based and fluctuationbased experiments are commonly utilized to measure the bending modulus,measuring the Gaussian curvature modulus and the spontaneous curvature of the membrane is considered to be much more difficult.In this paper,we study the buckling process of a circular membrane with nonzero spontaneous curvature under compressive stresses.It is found that when the stress exceeds a critical value,the circular membrane will transform from a spherical cap to a buckled shape,with its buckling degree enhanced with the increase of stress until its base is constricted to almost zero.As the stress-strain relationship of the buckled membrane strongly depends on the Gaussian curvature modulus and the spontaneous curvature,we therefore propose a method to determine the Gaussian curvature modulus and the spontaneous curvature simultaneously by measuring its stress-strain relationship during a buckling process.
基金financially supported by the National Key R&D Program of China(Grant No.2023YFF0716800)the National Natural Science Foundation of China(Grant No.12074160)the Natural Science Foundation of Liaoning Province of China(Grant No.2024-MS-181).
文摘As an emerging multifunctional metal with the lowest melting point except for mercury,gallium combines a wide range of metallic and non-metallic elements to form advanced semiconductors critically important in cutting-edge technologies.However,due to its low melting point and poor machinability,it is quite difficult to simultaneously characterize gallium’s elastic properties and damping characteristics using conventional methods,which is es-sential in designing and evaluating gallium-based structures.Therefore,developing effective methods to achieve accurate and efficient measurements of Young’s modulus and corresponding internal friction of gallium is of great significance.This letter studies simultaneous measurements of the variations in Young’s modulus and internal friction of gallium at varying temperatures by employing the modified piezoelectric ultrasonic composite oscil-lator technique.Combining the explicit theoretical formulas with the measured resonance and anti-resonance frequencies,it has been discovered that Young’s modulus undergoes an approximately linear decrease as the temperature rises,declining from 83.84 GPa at -70℃ to 79.37 GPa at 20℃.Moreover,like aluminum in the same Group ⅢA of the Periodic Table of Elements and exhibits a grain-boundary internal friction peak,gallium displays a longitudinal internal friction peak at approximately-12°C,with the peak value reaching 1.77×10^(-3).This basic research on gallium’s elastic properties and damping characteristics under low-temperature condi-tions will inspire further explorations of the mechanical properties of a diverse spectrum of low-melting-point functional materials and facilitate applications of gallium-based structures under complex conditions.
基金supported by the National Natural Science Foundation of China (Grant No.51705082)Fujian Provincial Minjiang Scholar Program (Grant No.0020-510759)+1 种基金Qishan Sholar program in Fuzhou University (Grant No.0020-650289)Fuzhou University Testing Fund of precious apparatus (Grant No.2023T018).
文摘The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).
基金support of this project through the Southwest Regional Partnership on Carbon Sequestration(Grant No.DE-FC26-05NT42591)Improving Production in the Emerging Paradox Oil Play(Grant No.DE-FE0031775).
文摘Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.
基金Project supported by Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515240072,2023A1515240053,2022B1515020099,and 2023A1515012641)Shenzhen Science and Technology Program(No.JCYJ20220818102409020)the National Natural Science Foundation of China(Nos.12102104 and 12002180)。
文摘Re-entrant honeycombs are widely used in safeguard structures due to their geometric simplicity and excellent energy absorption capacities.However,traditional re-entrant honeycombs exhibit insufficient stiffness and stability owing to the lack of internal support.This paper proposes a new hybrid honeycomb by integrating a chiral component inside the re-entrant honeycomb.Since Young's modulus is a key parameter to evaluate the energy absorption performance and stiffness,an analytical model is given to predict the effective Young's modulus of the proposed hybrid honeycomb.It is found that the optimal design scheme is to directly insert a circular ring inside the re-entrant honeycomb.The normalized specific energy absorption(SEA)of the hybrid honeycomb is 95%larger than that of the traditional re-entrant honeycomb.The normalized SEA first increases to a peak value and then decreases with the cell wall thickness.The optimal thickness of the cell wall for the maximum SEA is derived in terms of the geometric configuration of the unit cell.The normalized SEA first decreases to a valley value and then increases with the re-entrant angle.A longer horizontal cell wall results in a smaller normalized SEA.This paper provides a new design method for safeguard structures with high stiffness and energy absorption performance.
基金supported by the Gansu Key Research and Development Project,China(No.23YFGA0003)the Key Science and Technology Projects of Gansu Province,China(No.22ZD6GB019)+2 种基金Gansu Provincial Joint Research Fund,China(No.23JRRC0004)the Industry Support Plan of Gansu Universities,China(No.2024CYZC-01)the Fundamental Research Funds for the Central Universities,China(No.lzujbky-2022-ey15).
文摘Different from the current measurement methods for Young’s modulus of metal materials,the Young’s modulus of intermetallic compounds(IMCs)was obtained by a non-destructive method based on Brillouin light scattering(BLS)in this paper.The single-phase regions of CoSn,CoSn_(2),Cu_(3)Sn and Cu_(6)Sn_(5) phases required for BLS test were obtained by applying long-term thermal stabilization through adjusting temperature gradient.The volume fractions of the corresponding phases near the solid-liquid interfaces of the samples were 98.3%,94.2%,99.6% and 95.9%,respectively.All the independent elastic coefficients and Young’s moduli of IMCs were obtained by Brillouin scatterometer.The Young’s moduli of CoSn,CoSn_(2) and Cu_(3)Sn and Cu_(6)Sn_(5) phases obtained through the present method are 115.0,101.7,129.9 and 125.6 GPa,respectively,which are in a good agreement with the previous experimental results.Thus,the effectiveness of BLS in measuring the Young’s moduli of IMCs in bulk alloys is confirmed.
文摘The single-point bending method,based on atomic force microscopy(AFM),has been extensively validated for characterizing the structural mechanical properties of micro-and nanobeams.Nevertheless,the influence of AFM probe loading and positioning has yet to be subjected to comprehensive investigation.This paper proposes a novel bending-test method based on sequential loading points,in which a series of evenly distributed loads are applied along the length of the central axis on the upper surface of the cantilever.The preliminary measured values of Young’s modulus for an unknown alloy material were 193,178,and 176 GPa,exhibiting a considerable degree of dispersion.An algorithm for self-correction of the positioning error was developed,and this resulted in a positioning error of 53 nm and a final converged Young’s modulus of 161 GPa.
基金a phased achievement of the“Research on Chinese Confucian Orthodoxy”(Project No.:17ZDA010),a major project of the National Social Science Fund of China.
文摘Continuity is the foremost defining characteristic of Chinese civilization.It ensures that the evolution of this civilization respects the fine traditions and stays on the right course throughout its creative course.Meanwhile,creativity imparts ceaseless vitality to this civilization,serving as the intrinsic propulsive force that fuels its evolution.The rise of Song Studies marks one of the symbolic events in the transformation in the Chinese ideological and cultural realm.It encapsulates the dialectical unity between continuity and creativity that characterizes Chinese civilization.Song Studies adhere to the traditional classic interpretations,center the core values around“benevolence,”and pursue the way of sages,which reflect the continuity of Chinese civilization.They also embody creativity.This is manifested in the emergence of a new academic spirit that emphasizes the seeking of truth and reason,a new academic ethos that involves questioning classics in the process of their dissemination and interpreting them with one’s own insight,as well as the fusion of philosophical speculation with social practice.Conducting an integrated analysis of the defining characteristics of Chinese civilization and the rise of Song Studies helps us gain a thorough understanding of the dialectical unity between the continuity and creativity of Chinese civilization through the interactions between history and reality.It also enables us to effectively address the relationship between inheritance and transformation,as well as between maintaining core values and pursuing creativity throughout its ongoing development.
基金Supported by Project of the Health Bureau of the Logistics and Security Department of the Central Military Commission,No.145BHQ090003076XMilitary Family Planning Special Fund,No.21JSZ18.
文摘BACKGROUND Children with critical acute abdominal conditions often undergo intestinal stoma surgery.AIM To explore the impact of a visual mobile terminal-based extended care model on caregiver competence for children with enterostomies.METHODS One hundred twenty children with enterostomies and their caregivers in a children's hospital in Beijing were divided into a control group and a study group.The control group(60 cases)received traditional telephone follow-up for continuity of care,while the study group(60 cases)used a visualization mobile terminal-based care model.The incidence of stoma-related complications,caregiver burden scale,and competence scores of children with stoma were compared between the two groups.RESULTS The primary caregiver burden score in the study group(37.22±3.17)was significantly lower than that in the control group(80.00±4.47),and the difference was statistically significant(P<0.05).Additionally,the caregiving ability score of the study group(172.08±3.49)was significantly higher than that of the control group(117.55±4.28;P<0.05).The total incidence of complications in the study group(11.7%,7/60)was significantly lower compared to the control group(33.3%,20/60;χ2=8.086,P=0.004).CONCLUSION The visual mobile terminal-based care model reduces caregiver burden,improves home care ability,lowers the incidence of complications and readmission rates,and supports successful second-stage reduction surgery for children with enterostomies.
文摘Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the influences of particles in the same chain and the particles in all adjacent chains, the traditional magnetic dipole model of the magnetorheological elastomers is modified. The influence of the ratio of the distance etween adjacent chains to the distance between adjacent particles in a chain on the magnetic induced shear odulus is quantitatively studied. When the ratio is large, the multi-chain model is compatible with the single chain model, but when the ratio is small, the difference of the two models is significant and can not be neglected. Making certain the size of the columns and the distance between adjacent columns, after constructing the computational model of BCT structures, the mechanical property of the magnetorheological elastomers composed of columnar structures is analyzed. Results show that, conventional point dipole model has overrated the magnetic-induced shear modulus of the magnetorheological elastomers. From the point of increasing the magnetic-induced shear modulus, when the particle volume fraction is small, the chain-like structure exhibits better result than the columnar structure, but when the particle volume fraction is large,the columnar structure will be better.
基金supported by the National Nature Science Foundation of China (Grant Noss 40739907 and 40774064)National Science and Technology Major Project (Grant No. 2008ZX05025-003)
文摘The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.