While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re...While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.展开更多
The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ...The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.展开更多
Spinal cord ischemia-reperfusion injury,a severe form of spinal cord damage,can lead to sensory and motor dysfunction.This injury often occurs after traumatic events,spinal cord surgeries,or thoracoabdominal aortic su...Spinal cord ischemia-reperfusion injury,a severe form of spinal cord damage,can lead to sensory and motor dysfunction.This injury often occurs after traumatic events,spinal cord surgeries,or thoracoabdominal aortic surgeries.The unpredictable nature of this condition,combined with limited treatment options,poses a significant burden on patients,their families,and society.Spinal cord ischemia-reperfusion injury leads to reduced neuronal regenerative capacity and complex pathological processes.In contrast,mitophagy is crucial for degrading damaged mitochondria,thereby supporting neuronal metabolism and energy supply.However,while moderate mitophagy can be beneficial in the context of spinal cord ischemia-reperfusion injury,excessive mitophagy may be detrimental.Therefore,this review aims to investigate the potential mechanisms and regulators of mitophagy involved in the pathological processes of spinal cord ischemia-reperfusion injury.The goal is to provide a comprehensive understanding of recent advancements in mitophagy related to spinal cord ischemia-reperfusion injury and clarify its potential clinical applications.展开更多
Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,includi...Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar ener...The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.展开更多
Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering impleme...Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility.展开更多
Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarizat...Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.展开更多
Exosomes have shown good potential in ischemic injury disease treatments.However,evidence about their effect and molecular mechanisms in osteonecrosis of femoral head(ONFH)treatment is still limited.Here,we revealed t...Exosomes have shown good potential in ischemic injury disease treatments.However,evidence about their effect and molecular mechanisms in osteonecrosis of femoral head(ONFH)treatment is still limited.Here,we revealed the cell biology characters of ONFH osteonecrosis area bone tissue in single cell scale and thus identified a novel ONFH treatment approach based on M2 macrophages-derived exosomes(M2-Exos).We further show that M2-Exos are highly effective in the treatment of ONFH by modulating the phenotypes communication between neutrophil and endothelium including neutrophil extracellular traps formation and endothelial phenotype transition.Additionally,we identified that M2-Exos’therapeutic effect is attributed to the high content of miR-93-5p and constructed miR-93-5p overexpression model in vitro and in vivo based on lentivirus and adenoassociated virus respectively.Then we found miR-93-5p can not only reduce neutrophil extracellular traps formation but also improve angiogenic ability of endothelial cells.These results provided a new theoretical basis for the clinical application of ONFH therapeutic exosomes.展开更多
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification(HO).Understanding accessory factors modulating BMP signaling would provide both a means of ...Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification(HO).Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO.This study focuses on the ability of the collagen receptor,discoidin domain receptor 2(DDR2),to regulate BMP activity.As will be shown,induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice.In addition,Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva.In cells migrating into BMP2 implants,DDR2 is co-expressed with GLI1,a skeletal stem cell marker,and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages.Consistent with this distribution,conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals.This response was explained by selective inhibition of Gli1+cell proliferation without changes in apoptosis.The basis for this DDR2 requirement was explored further using bone marrow stromal cells.Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo,bone formation,early BMP responses including SMAD phosphorylation remained largely intact.Instead,Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates,YAP and TAZ.This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix,which subsequently affect BMP responsiveness.In summary,DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.展开更多
A two-way K/Ka-band series-Doherty PA(SDPA)with a distributed impedance inverting network(IIN)for millimeter wave applications is presented in this article.The proposed distributed IIN contributes to achieve wideband ...A two-way K/Ka-band series-Doherty PA(SDPA)with a distributed impedance inverting network(IIN)for millimeter wave applications is presented in this article.The proposed distributed IIN contributes to achieve wideband linear and power back-off(PBO)efficiency enhancement.Implemented in 65 nm bulk CMOS technology,this work realizes a measured 3 dB band-width of 15.5 GHz with 21.2 dB peak small-signal gain at 34.2 GHz.Under 1-V power supply,it achieves OP1dB over 13.4 dBm and Psat over 16 dBm between 21 to 30 GHz.The measured maximum Psat,OP1dB,peak/OP1dB/6dBPBO PAE results are 17.5,14.7 dBm,and 28.2%/23.2%/13.2%.Without digital pre-distortion(DPD)and equalization,EVMs are lower than-25.2 dB for 200 MHz 64-QAM signals.Besides,this work achieves-33.35,-23.52,and-20 dB EVMs for 100 MHz 256-QAM,600 MHz 64-QAM and 2 GHz 16-QAM signals at 27 GHz without DPD and equalization.展开更多
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management...All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.展开更多
Objective Selective estrogen receptor modulators(SERMs)have demonstrated efficacy in the treatment of hypogonadism in males and male factor infertility.Two SERMs,clomiphene citrate and tamoxifen,are now prescribed for...Objective Selective estrogen receptor modulators(SERMs)have demonstrated efficacy in the treatment of hypogonadism in males and male factor infertility.Two SERMs,clomiphene citrate and tamoxifen,are now prescribed for off-label use to treat both conditions in males.However,existing literature compares mixed protocols with active management.We aimed to conduct a meta-analysis to evaluate the effect of clomiphene and tamoxifen versus placebo on natural pregnancy rates.Methods We conducted a comprehensive systematic review of electronic databases:MEDLINE,PubMed/PMC,EMBASE,CINAHL,Cochrane Central Register of Controlled Trials(CENTRAL),Scopus,Google Scholar,and Web of Science.Articles satisfying all selection criteria were analyzed.The primary outcome was the incidence of pregnancy after receiving the treatment.Secondary outcomes included serum follicle-stimulating hormone,luteinizing hormone,and testosterone levels,and sperm count and motility.We calculated the pooled odds ratio,risk ratio,and risk difference to ascertain possible alterations in the direction of the pooled effect size.Results Ten randomized controlled trials were ultimately included and underwent data extraction.Clomiphene citrate and placebo groups had similar pregnancy rates(10.4%and 7.1%,respectively;odds ratio 1.30[95%confidence interval 0.27–6.17];p=0.74).No meta-analysis could be calculated for pregnancy rates in tamoxifen versus placebo groups.Heterogeneity among the studies of both SERMs ranged from low to high.Conclusion Although clomiphene citrate and tamoxifen are often used off-label for the treatment of male infertility secondary to hypogonadism,studies of SERMs in the treatment of idiopathic male factor infertility are limited and heterogenous,preventing this meta-analysis from investigating the efficacy of SERMs on male infertility.The effect of clomiphene citrate or tamoxifen on the pregnancy rate remains uncertain.展开更多
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph...The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.展开更多
The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a ...The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a novel carrier-interleaved pulse width modulation(CIPWM)method that satisfies the volt-sec balance principle is proposed with an advanced carrier distribution rule.By adopting the proposed CIPWM method,the redundant switching states of 4L-NNPC inverters can be evenly distributed into the output PWM waveform in each carrier period,and natural flying-capacitor voltage balance can be achieved.Furthermore,an active balancing strategy is also proposed to eliminate the voltage unbalance caused by nonideal factors,which is realized by simply adjusting the duty cycle and with no need to adjust the redundant switching states for 4L-NNPC inverters.The simulation and experimental results verify the effectiveness of the proposed CIPWM method and the flying-capacitor voltage balancing strategy.展开更多
基金funding from the National Key Research and Development Program of China(No.2018YFE0110000)the National Natural Science Foundation of China(No.11274259,No.11574258)the Science and Technology Commission Foundation of Shanghai(21DZ1205500)in support of the present research.
文摘While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.
基金supported in part by the Rosetrees Trust(#CF-2023-I-2_113)by the Israel Ministry of Innovation,Science,and Technology(#7393)(to ES).
文摘The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.
基金supported by Cuiying Scientific and Technological Innovation Program of Second Hospital of Lanzhou University,Nos.CY2023-QN-B18(to YD),2020QN-16(to YZ)the Natural Science Foundation of Gansu Province,No.22JR11RA082(to YZ)Key R&D Plan of Gansu Provincial Department of Science and Technology-Social Development Projects,No.23YFFA0043(to XK).
文摘Spinal cord ischemia-reperfusion injury,a severe form of spinal cord damage,can lead to sensory and motor dysfunction.This injury often occurs after traumatic events,spinal cord surgeries,or thoracoabdominal aortic surgeries.The unpredictable nature of this condition,combined with limited treatment options,poses a significant burden on patients,their families,and society.Spinal cord ischemia-reperfusion injury leads to reduced neuronal regenerative capacity and complex pathological processes.In contrast,mitophagy is crucial for degrading damaged mitochondria,thereby supporting neuronal metabolism and energy supply.However,while moderate mitophagy can be beneficial in the context of spinal cord ischemia-reperfusion injury,excessive mitophagy may be detrimental.Therefore,this review aims to investigate the potential mechanisms and regulators of mitophagy involved in the pathological processes of spinal cord ischemia-reperfusion injury.The goal is to provide a comprehensive understanding of recent advancements in mitophagy related to spinal cord ischemia-reperfusion injury and clarify its potential clinical applications.
基金supported by the Hellenic Foundation for Research and Innovation,HFRI,“2nd Call for HFRI Research Projects to support Faculty Members&Researchers”Project 02667 to GL.
文摘Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
文摘The growing need for sustainable energy solutions,driven by rising energy shortages,environmental concerns,and the depletion of conventional energy sources,has led to a significant focus on renewable energy.Solar energy,among the various renewable sources,is particularly appealing due to its abundant availability.However,the efficiency of commercial solar photovoltaic(PV)modules is hindered by several factors,notably their conversion efficiency,which averages around 19%.This efficiency can further decline to 10%–16%due to temperature increases during peak sunlight hours.This study investigates the cooling of PV modules by applying water to their front surface through Computational fluid dynamics(CFD).The study aimed to determine the optimal conditions for cooling the PV module by analyzing the interplay between water film thickness,Reynolds number,and their effects on temperature reduction and heat transfer.The CFD analysis revealed that the most effective cooling condition occurred with a 5 mm thick water film and a Reynolds number of 10.These specific parameters were found to maximize the heat transfer and temperature reduction efficiency.This finding is crucial for the development of practical and efficient cooling systems for PV modules,potentially leading to improved performance and longevity of solar panels.Alternative cooling fluids or advanced cooling techniques that might offer even better efficiency or practical benefits.
基金supported by the National Natural Science Foundation of China(Nos.51925103,52271149,52171159)the Innovation Program of Shanghai Municipal Education Commission(No.2021-01-07-00-09-E00114)+5 种基金the Natural Science Foundation of Shanghai(22ZR1422500)the Innovation Program of Shanghai Science and Technology(No.23520760700)the Aviation Foundation(No.2023Z0530S6004)the Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202221)the financial support from Program 173(No.2020-JCIQ-ZD-186-01)the Space Utilization System of China Manned Space Engineering(No.KJZ-YY-NCL08).
文摘Lightweight high/medium-entropy alloys(H/MEAs)possess attractive properties such as high strength-to-weight ratios,however,their limited room-temperature tensile ductility hinders their widespread engi-neering implementation,for instance in aerospace structural components.This work achieved a transfor-mative improvement of room-temperature tensile ductility in Ti-V-Zr-Nb MEAs with densities of 5.4-6.5 g/cm3,via ingenious composition modulation.Through the systematic co-adjustment of Ti and V contents,an intrinsic ductility mechanism was unveiled,manifested by a transition from predominant intergranular brittle fracture to pervasive ductile dimpled rupture.Notably,the modulated deformation mechanisms evolved from solitary slip toward collaborative multiple slip modes,without significantly compromising strength.Compared to equimolar Ti-V-Zr-Nb,a(Ti1.5V)3ZrNb composition demonstrated an impressive 360%improvement in elongation while sustaining a high yield strength of around 800 MPa.Increasing Ti and V not only purified the grain boundaries by reducing detrimental phases,but also tai-lored the deformation dislocation configurations.These insights expanded the applicability of lightweight HEAs to areas demanding combined high strength and ductility.
基金supports from National Key Research and Development Program of China(2021YFB2800703)Sichuan Province Science and Technology Support Program(25QNJJ2419)+1 种基金National Natural Science Foundation of China(U22A2008,12404484)Laoshan Laboratory Science and Technology Innovation Project(LSKJ202200801).
文摘Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.
基金the support of the National Natural Science Foundation of China (Grant No.82272503)Natural Science Foundation of Zhejiang Province (Grant No. LQN25H060006)
文摘Exosomes have shown good potential in ischemic injury disease treatments.However,evidence about their effect and molecular mechanisms in osteonecrosis of femoral head(ONFH)treatment is still limited.Here,we revealed the cell biology characters of ONFH osteonecrosis area bone tissue in single cell scale and thus identified a novel ONFH treatment approach based on M2 macrophages-derived exosomes(M2-Exos).We further show that M2-Exos are highly effective in the treatment of ONFH by modulating the phenotypes communication between neutrophil and endothelium including neutrophil extracellular traps formation and endothelial phenotype transition.Additionally,we identified that M2-Exos’therapeutic effect is attributed to the high content of miR-93-5p and constructed miR-93-5p overexpression model in vitro and in vivo based on lentivirus and adenoassociated virus respectively.Then we found miR-93-5p can not only reduce neutrophil extracellular traps formation but also improve angiogenic ability of endothelial cells.These results provided a new theoretical basis for the clinical application of ONFH therapeutic exosomes.
基金Scientific Research Training Program for Young Talents of Union Hospital,Tongji Medical College,Huazhong University of Science and Technology(F.W.),NIH/NIDCR grants DE029012 and DE029465Department of Defense Grant PR190899(R.T.F.)Michigan Musculoskeletal Health Core Center(NIH/NIAMS P30 AR069620)。
文摘Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification(HO).Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO.This study focuses on the ability of the collagen receptor,discoidin domain receptor 2(DDR2),to regulate BMP activity.As will be shown,induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice.In addition,Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva.In cells migrating into BMP2 implants,DDR2 is co-expressed with GLI1,a skeletal stem cell marker,and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages.Consistent with this distribution,conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals.This response was explained by selective inhibition of Gli1+cell proliferation without changes in apoptosis.The basis for this DDR2 requirement was explored further using bone marrow stromal cells.Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo,bone formation,early BMP responses including SMAD phosphorylation remained largely intact.Instead,Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates,YAP and TAZ.This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix,which subsequently affect BMP responsiveness.In summary,DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807300the Beijing Advanced Innovation Center for Integrated Circuits。
文摘A two-way K/Ka-band series-Doherty PA(SDPA)with a distributed impedance inverting network(IIN)for millimeter wave applications is presented in this article.The proposed distributed IIN contributes to achieve wideband linear and power back-off(PBO)efficiency enhancement.Implemented in 65 nm bulk CMOS technology,this work realizes a measured 3 dB band-width of 15.5 GHz with 21.2 dB peak small-signal gain at 34.2 GHz.Under 1-V power supply,it achieves OP1dB over 13.4 dBm and Psat over 16 dBm between 21 to 30 GHz.The measured maximum Psat,OP1dB,peak/OP1dB/6dBPBO PAE results are 17.5,14.7 dBm,and 28.2%/23.2%/13.2%.Without digital pre-distortion(DPD)and equalization,EVMs are lower than-25.2 dB for 200 MHz 64-QAM signals.Besides,this work achieves-33.35,-23.52,and-20 dB EVMs for 100 MHz 256-QAM,600 MHz 64-QAM and 2 GHz 16-QAM signals at 27 GHz without DPD and equalization.
基金the funding and generous support of the National Natural Science Foundation of China(52103263,52271249)the Key Project of International Science&Technology Cooperation of Shaanxi Province(2023-GHZD-09)+5 种基金the Key Project of Science Foundation of Education Department of Shaanxi Province(22JY011)the Key Project of Scientific Research and Development of Shaanxi Province(2023GXLH-070)the Qinchuangyuan"Scientist+Engineer"Team of Shaanxi Province(2023KXJ-069)the Key Research and Development Program of Shaanxi(2023-YBGY-488)the Sci-tech Innovation Team of Shaanxi Province(2024RS-CXTD-46)the Key Research and Development Program of Shaanxi Province(2020ZDLGY13-11).
文摘All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.
文摘Objective Selective estrogen receptor modulators(SERMs)have demonstrated efficacy in the treatment of hypogonadism in males and male factor infertility.Two SERMs,clomiphene citrate and tamoxifen,are now prescribed for off-label use to treat both conditions in males.However,existing literature compares mixed protocols with active management.We aimed to conduct a meta-analysis to evaluate the effect of clomiphene and tamoxifen versus placebo on natural pregnancy rates.Methods We conducted a comprehensive systematic review of electronic databases:MEDLINE,PubMed/PMC,EMBASE,CINAHL,Cochrane Central Register of Controlled Trials(CENTRAL),Scopus,Google Scholar,and Web of Science.Articles satisfying all selection criteria were analyzed.The primary outcome was the incidence of pregnancy after receiving the treatment.Secondary outcomes included serum follicle-stimulating hormone,luteinizing hormone,and testosterone levels,and sperm count and motility.We calculated the pooled odds ratio,risk ratio,and risk difference to ascertain possible alterations in the direction of the pooled effect size.Results Ten randomized controlled trials were ultimately included and underwent data extraction.Clomiphene citrate and placebo groups had similar pregnancy rates(10.4%and 7.1%,respectively;odds ratio 1.30[95%confidence interval 0.27–6.17];p=0.74).No meta-analysis could be calculated for pregnancy rates in tamoxifen versus placebo groups.Heterogeneity among the studies of both SERMs ranged from low to high.Conclusion Although clomiphene citrate and tamoxifen are often used off-label for the treatment of male infertility secondary to hypogonadism,studies of SERMs in the treatment of idiopathic male factor infertility are limited and heterogenous,preventing this meta-analysis from investigating the efficacy of SERMs on male infertility.The effect of clomiphene citrate or tamoxifen on the pregnancy rate remains uncertain.
基金supported by National Natural Science Foundation of China(62174164,U23A20568,and U22A2075)National Key Research and Development Project(2021YFA1202600)+2 种基金Talent Plan of Shanghai Branch,Chinese Academy of Sciences(CASSHB-QNPD-2023-022)Ningbo Technology Project(2022A-007-C)Ningbo Key Research and Development Project(2023Z021).
文摘The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.
基金supported by Beijing Natural Science Foundation under Grant L242006.
文摘The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a novel carrier-interleaved pulse width modulation(CIPWM)method that satisfies the volt-sec balance principle is proposed with an advanced carrier distribution rule.By adopting the proposed CIPWM method,the redundant switching states of 4L-NNPC inverters can be evenly distributed into the output PWM waveform in each carrier period,and natural flying-capacitor voltage balance can be achieved.Furthermore,an active balancing strategy is also proposed to eliminate the voltage unbalance caused by nonideal factors,which is realized by simply adjusting the duty cycle and with no need to adjust the redundant switching states for 4L-NNPC inverters.The simulation and experimental results verify the effectiveness of the proposed CIPWM method and the flying-capacitor voltage balancing strategy.