Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,includi...Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).展开更多
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification(HO).Understanding accessory factors modulating BMP signaling would provide both a means of ...Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification(HO).Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO.This study focuses on the ability of the collagen receptor,discoidin domain receptor 2(DDR2),to regulate BMP activity.As will be shown,induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice.In addition,Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva.In cells migrating into BMP2 implants,DDR2 is co-expressed with GLI1,a skeletal stem cell marker,and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages.Consistent with this distribution,conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals.This response was explained by selective inhibition of Gli1+cell proliferation without changes in apoptosis.The basis for this DDR2 requirement was explored further using bone marrow stromal cells.Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo,bone formation,early BMP responses including SMAD phosphorylation remained largely intact.Instead,Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates,YAP and TAZ.This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix,which subsequently affect BMP responsiveness.In summary,DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.展开更多
Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodu...Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.展开更多
Astrocytes,the main population of glial cells in the central nervous system(CNS),exert essential tasks for the control of brain tissue homeostasis,supporting neuron and other glial cell activity from the developmental...Astrocytes,the main population of glial cells in the central nervous system(CNS),exert essential tasks for the control of brain tissue homeostasis,supporting neuron and other glial cell activity from the developmental stage to adult life.To maintain the optimal functionality of the brain,astroglial cells are particularly committed to reacting to every change in tissue homeostatic conditions,from mild modifications of the physiological environment,a process called astrocyte activation,to the more severe alterations occurring in pathological situations causing astrocyte reactivity or reactive astrogliosis(Escartin et al.,2021).During these reactive states,astrocytes mount an active,progressive response encompassing morphological,molecular,and interactional remodeling,leading to the acquisition of new functions and the loss of others,whose intensity,duration,and reversibility are dependent on the nature of the stimulus and regulated in a context-specific manner.展开更多
时间序列聚类中的相似度度量方法选择已成为研究热点。目前大多数的聚类方法使用欧式距离进行相似性度量,但欧式距离进行度量对结构复杂的时间序列适用性较差,不能很好的提高聚类的准确性。提出一种基于动态时间弯曲(Dynamic Time Warpi...时间序列聚类中的相似度度量方法选择已成为研究热点。目前大多数的聚类方法使用欧式距离进行相似性度量,但欧式距离进行度量对结构复杂的时间序列适用性较差,不能很好的提高聚类的准确性。提出一种基于动态时间弯曲(Dynamic Time Warping)的PAM(Partitioning Around Medoids)算法,该方法在PAM算法的基础上引入DTW,以发现时间序列中的相似模式,增强对时间序列的偏移、振幅变化等情况的鲁棒性。在UCR数据集上的实验结果验证了PAM-DTW的准确率和稳定性优于传统算法。展开更多
As the demand for computing power in data centers continues to grow, balancing data transmitting speed and energy efficiency has emerged as a critical challenge. Highbandwidth, low-power interconnection schemes are in...As the demand for computing power in data centers continues to grow, balancing data transmitting speed and energy efficiency has emerged as a critical challenge. Highbandwidth, low-power interconnection schemes are increasingly recognized as core requirements for next-generation intelligent computing center designs^([1, 2]). For short-range optical interconnections of intra-chip and inter-chip—typically covering tens of meters or less—microring resonant modulators (MRM) are emerging as an ideal solution.展开更多
CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms,evolving from a singular Cas9 model to a diverse CRISPR toolbox.A critical bottleneck in developing new Cas proteins is identif...CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms,evolving from a singular Cas9 model to a diverse CRISPR toolbox.A critical bottleneck in developing new Cas proteins is identifying protospacer adjacent motif(PAM)sequences.Due to the limitations of experimental methods,bioinformatics approaches have become essential.However,existing PAM prediction programs are limited by the small number of spacers in CRISPR-Cas systems,resulting in low accuracy.To address this,we develop PAMPHLET,a pipeline that uses homology searches to identify additional spacers,significantly increasing the number of spacers up to 18-fold.PAMPHLET is validated on 20 CRISPR-Cas systems and successfully predicts PAM sequences for 18 protospacers.These predictions are further validated using the DocMF platform,which characterizes protein-DNA recognition patterns via next-generation sequencing.The high consistency between PAMPHLET predictions and DocMF results for Cas proteins demonstrates the potential of PAMPHLET to enhance PAM sequence prediction accuracy,expedite the discovery process,and accelerate the development of CRISPR tools.展开更多
Based on previous experience,learning to avoid or seek certain specific stimuli again in the future is crucial for survival.Our brains are wired to assign a particular valence-either positive or negativeas a result of...Based on previous experience,learning to avoid or seek certain specific stimuli again in the future is crucial for survival.Our brains are wired to assign a particular valence-either positive or negativeas a result of sensory stimuli,and it is this valence that serves as the foundational motivation for our subsequent actions.Simply put,all motivational actions fall into two categories:pleasure-seeking behavior guided by positive emotional valence,and pain-avoiding behavior driven by negative emotional valence[1].The ability to shift from one emotional valence to another is an important characteristic of affective states,while the instability of emotional states underlies many psychiatric disorders,highlighting the clinical importance of managing and understanding these fluctuations.This ability to adapt emotional responses can be attained by modulating the gain across distinct neural pathways,thus enabling the nuanced and smooth assignment of valence through the strengthening or weakening of circuit activity[1,2].展开更多
The adsorption of phosphate was conducted by the complex of chitosan/polyacrylamide/ferric(CS/PAM/Fe(Ⅲ))prepared.The SEM images and XPS spectra confirmed the successful adsorption of phosphate.The adsorption process ...The adsorption of phosphate was conducted by the complex of chitosan/polyacrylamide/ferric(CS/PAM/Fe(Ⅲ))prepared.The SEM images and XPS spectra confirmed the successful adsorption of phosphate.The adsorption process was studied by varying the influencing aspects like pH,co-existing ions,contact time,and initial phosphate concentration.The experimental results indicate that the adsorptive capacity decreases with the increase of pH.However,it is commendable that there is still a adsorption capacity of more than 5 mg/g when the pH is 8-11.The adsorption kinetics can be accurately described by the pseudo-second-order model and is controlled by both chemisorption and surface diffusion.The adsorption process is a single layer adsorption.This paper proposed that the adsorption mechanism of CS/PAM/Fe(Ⅲ)complex is the joint action of electrostatic attraction and ligand exchange.展开更多
With the continuous improvement of signal processing accuracy requirements in modern electronic systems,the demand for high-precision analog-to-digital converters(ADCs)is increasing.Sigma-Delta modulator,as the most i...With the continuous improvement of signal processing accuracy requirements in modern electronic systems,the demand for high-precision analog-to-digital converters(ADCs)is increasing.Sigma-Delta modulator,as the most important component of high-precision ADC,is widely used in high-quality audio,high-precision instrument measurement,and other fields due to its advantages of high precision,strong noise resistance,and low hardware cost.This article designs a discrete structure third-order four-bit high-precision Sigma-Delta modulator through modeling,with an oversampling rate set to 512.Under ideal conditions,the simulation results show that the SDNR reaches 152.7db and the ENOB is 25.24bits.After introducing non-ideal noise,the system performance has decreased.The simulation results show that the SDNR is as high as 124.5db and the ENOB is 20.39bits.This indicates that the design can achieve high-precision conversion and provide assistance for further research in the future.展开更多
基金supported by the Hellenic Foundation for Research and Innovation,HFRI,“2nd Call for HFRI Research Projects to support Faculty Members&Researchers”Project 02667 to GL.
文摘Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).
基金Scientific Research Training Program for Young Talents of Union Hospital,Tongji Medical College,Huazhong University of Science and Technology(F.W.),NIH/NIDCR grants DE029012 and DE029465Department of Defense Grant PR190899(R.T.F.)Michigan Musculoskeletal Health Core Center(NIH/NIAMS P30 AR069620)。
文摘Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification(HO).Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO.This study focuses on the ability of the collagen receptor,discoidin domain receptor 2(DDR2),to regulate BMP activity.As will be shown,induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice.In addition,Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva.In cells migrating into BMP2 implants,DDR2 is co-expressed with GLI1,a skeletal stem cell marker,and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages.Consistent with this distribution,conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals.This response was explained by selective inhibition of Gli1+cell proliferation without changes in apoptosis.The basis for this DDR2 requirement was explored further using bone marrow stromal cells.Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo,bone formation,early BMP responses including SMAD phosphorylation remained largely intact.Instead,Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates,YAP and TAZ.This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix,which subsequently affect BMP responsiveness.In summary,DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.
文摘Spatial memory is crucial for survival within external surroundings and wild environments.The hippocampus,a critical hub for spatial learning and memory formation,has received extensive investigations on how neuromodulators shape its functions(Teixeira et al.,2018;Zhang et al.,2024).However,the landscape of neuromodulations in the hippocampal system remains poorly understood because most studies focus on classical monoamine neuromodulators,such as acetylcholine,serotonin,dopamine,and noradrenaline.The neuropeptides,comprising the most abundant neuromodulators in the central nervous system,play a pivotal role in neural information processing in the hippocampal system.Cholecystokinin(CCK),one of the most abundant neuropeptides,has been implicated in regulating various physiological and neurobiological statuses(Chen et al.,2019).CCK-A receptor(CCK-AR)and CCK-B receptors(CCK-BR)are two key receptors mediating the biological functions of CCK,both of which belong to class-A sevenfold transmembrane G protein-coupled receptors(Nishimura et al.,2015).CCK-AR preferentially reacts to sulfated CCK,whereas CCK-BR binds both CCK and gastrin with similar affinities(Ding et al.,2022).The expression patterns of CCK-AR and CCK-BR are distinct,implying that CCK has various functions in target regions.For instance,CCK-AR is widely expressed in the GI and brain subregions and is hence implicated in the control of digestive function and satiety regulation.Conversely,CCK-BR is abundantly and widely distributed in the central nervous system,which majorly regulates anxiety,learning,and memory(Ding et al.,2022).However,the roles of endogenous CCK and CCK receptors in regulating hippocampal function at electrophysiological and behavioral levels have received less attention.
基金supported by funds from the Italian Ministry of Health,Ricerca Finalizzata,(Grant N.GR-2013-02355882 and GR-2021-12373946 to AL)5x1000 Project of the Istituto Superiore di Sanità(Project code:ISS5x1000_21-949432e8c9be to AL)the European Union–NextGeneration EU through the Italian Ministry of University and Research under PNRR-M4C2-I1.3 Project PE_00000019“HEAL ITALIA”to EA(CUP I83C22001830006)。
文摘Astrocytes,the main population of glial cells in the central nervous system(CNS),exert essential tasks for the control of brain tissue homeostasis,supporting neuron and other glial cell activity from the developmental stage to adult life.To maintain the optimal functionality of the brain,astroglial cells are particularly committed to reacting to every change in tissue homeostatic conditions,from mild modifications of the physiological environment,a process called astrocyte activation,to the more severe alterations occurring in pathological situations causing astrocyte reactivity or reactive astrogliosis(Escartin et al.,2021).During these reactive states,astrocytes mount an active,progressive response encompassing morphological,molecular,and interactional remodeling,leading to the acquisition of new functions and the loss of others,whose intensity,duration,and reversibility are dependent on the nature of the stimulus and regulated in a context-specific manner.
文摘时间序列聚类中的相似度度量方法选择已成为研究热点。目前大多数的聚类方法使用欧式距离进行相似性度量,但欧式距离进行度量对结构复杂的时间序列适用性较差,不能很好的提高聚类的准确性。提出一种基于动态时间弯曲(Dynamic Time Warping)的PAM(Partitioning Around Medoids)算法,该方法在PAM算法的基础上引入DTW,以发现时间序列中的相似模式,增强对时间序列的偏移、振幅变化等情况的鲁棒性。在UCR数据集上的实验结果验证了PAM-DTW的准确率和稳定性优于传统算法。
基金supported by the National Natural Science Foundation of China (Grant Nos. 61925505 and 62405070)"Pioneer" and "Leading Goose" R&D Program of Zhejiang Province (Grant No. 2024C01112)National Key Research and Development Program of China (Grant No. 2023YFB2807100)。
文摘As the demand for computing power in data centers continues to grow, balancing data transmitting speed and energy efficiency has emerged as a critical challenge. Highbandwidth, low-power interconnection schemes are increasingly recognized as core requirements for next-generation intelligent computing center designs^([1, 2]). For short-range optical interconnections of intra-chip and inter-chip—typically covering tens of meters or less—microring resonant modulators (MRM) are emerging as an ideal solution.
基金supported by grants from the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(2024KQNCX157)Our work was also supported in part by the Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College(2022B1212010006)+1 种基金in part by the Guangdong Higher Education Upgrading Plan(2021-2025)of“Rushing to the Top,Making Up Shortcomings and Strengthening Special Features”(R0400001-22)Additionally,we acknowledge support from the Zhuhai Basic and Applied Basic ResearchFoundation(2220004002717).
文摘CRISPR-Cas technology has revolutionized our ability to understand and engineer organisms,evolving from a singular Cas9 model to a diverse CRISPR toolbox.A critical bottleneck in developing new Cas proteins is identifying protospacer adjacent motif(PAM)sequences.Due to the limitations of experimental methods,bioinformatics approaches have become essential.However,existing PAM prediction programs are limited by the small number of spacers in CRISPR-Cas systems,resulting in low accuracy.To address this,we develop PAMPHLET,a pipeline that uses homology searches to identify additional spacers,significantly increasing the number of spacers up to 18-fold.PAMPHLET is validated on 20 CRISPR-Cas systems and successfully predicts PAM sequences for 18 protospacers.These predictions are further validated using the DocMF platform,which characterizes protein-DNA recognition patterns via next-generation sequencing.The high consistency between PAMPHLET predictions and DocMF results for Cas proteins demonstrates the potential of PAMPHLET to enhance PAM sequence prediction accuracy,expedite the discovery process,and accelerate the development of CRISPR tools.
基金supported by grants from the Key-Area Research and Development Program of Guangdong province(2019B030335001)the National Natural Science Foundation of China(32200815)the China Postdoctoral Science Foundation(2022M721218).
文摘Based on previous experience,learning to avoid or seek certain specific stimuli again in the future is crucial for survival.Our brains are wired to assign a particular valence-either positive or negativeas a result of sensory stimuli,and it is this valence that serves as the foundational motivation for our subsequent actions.Simply put,all motivational actions fall into two categories:pleasure-seeking behavior guided by positive emotional valence,and pain-avoiding behavior driven by negative emotional valence[1].The ability to shift from one emotional valence to another is an important characteristic of affective states,while the instability of emotional states underlies many psychiatric disorders,highlighting the clinical importance of managing and understanding these fluctuations.This ability to adapt emotional responses can be attained by modulating the gain across distinct neural pathways,thus enabling the nuanced and smooth assignment of valence through the strengthening or weakening of circuit activity[1,2].
基金Funded by the Provincial Natural Science Foundation for Universities of AnhuiChina(No.KJ2021A0624)+1 种基金the Director's Fund of Anhui Province Advanced Building Materials International Research Center(No.JZCL2207ZR)the Anhui Jianzhu University Talent Introduction and Doctoral Start-up Fund(No.2023QDZ23)。
文摘The adsorption of phosphate was conducted by the complex of chitosan/polyacrylamide/ferric(CS/PAM/Fe(Ⅲ))prepared.The SEM images and XPS spectra confirmed the successful adsorption of phosphate.The adsorption process was studied by varying the influencing aspects like pH,co-existing ions,contact time,and initial phosphate concentration.The experimental results indicate that the adsorptive capacity decreases with the increase of pH.However,it is commendable that there is still a adsorption capacity of more than 5 mg/g when the pH is 8-11.The adsorption kinetics can be accurately described by the pseudo-second-order model and is controlled by both chemisorption and surface diffusion.The adsorption process is a single layer adsorption.This paper proposed that the adsorption mechanism of CS/PAM/Fe(Ⅲ)complex is the joint action of electrostatic attraction and ligand exchange.
文摘With the continuous improvement of signal processing accuracy requirements in modern electronic systems,the demand for high-precision analog-to-digital converters(ADCs)is increasing.Sigma-Delta modulator,as the most important component of high-precision ADC,is widely used in high-quality audio,high-precision instrument measurement,and other fields due to its advantages of high precision,strong noise resistance,and low hardware cost.This article designs a discrete structure third-order four-bit high-precision Sigma-Delta modulator through modeling,with an oversampling rate set to 512.Under ideal conditions,the simulation results show that the SDNR reaches 152.7db and the ENOB is 25.24bits.After introducing non-ideal noise,the system performance has decreased.The simulation results show that the SDNR is as high as 124.5db and the ENOB is 20.39bits.This indicates that the design can achieve high-precision conversion and provide assistance for further research in the future.