【目的】针对几何误差和非几何误差导致远程运动中心(Remote Center of Motion,RCM)机械臂运动过程中产生RCM约束点位置误差,进而存在一定的安全性问题,提出了一种微创手术机器人RCM机械臂广义运动学误差建模与补偿方法。【方法】首先,...【目的】针对几何误差和非几何误差导致远程运动中心(Remote Center of Motion,RCM)机械臂运动过程中产生RCM约束点位置误差,进而存在一定的安全性问题,提出了一种微创手术机器人RCM机械臂广义运动学误差建模与补偿方法。【方法】首先,基于切比雪夫多项式建立表征几何误差和非几何误差引起的关节相关运动学误差的误差模型;然后,通过最小二乘法对误差模型中的多项式系数和运动学参数误差进行辨识;最后,采用关节空间补偿的方法,以降低RCM约束点位置误差。【结果】试验结果表明,补偿后的RCM约束点位置误差由2.7261 mm减小到0.6415 mm,减小了约76.5%。展开更多
Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarizat...Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.展开更多
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management...All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.展开更多
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph...The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.展开更多
High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,inclu...High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.展开更多
El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation an...El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.展开更多
Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy...Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.展开更多
Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the ...Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances.In this paper,D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals.In addition,the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination.A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries.Meanwhile,LiF is used to create this field effect,repelling hole carriers away from the PVK and C60 interface and thus reducing recombination.As a result,a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6%(0.16 cm^(2)),one of the highest results for 2-T PVK/CIGS TSCs to our knowledge.This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.展开更多
The subnucleus reticularis dorsalis(SRD),also known as the dorsal reticular nucleus(DRt)or dorsal medullary reticular nucleus(MdD),which resides at the caudal end of the medulla,plays a pivotal role in regulating pain...The subnucleus reticularis dorsalis(SRD),also known as the dorsal reticular nucleus(DRt)or dorsal medullary reticular nucleus(MdD),which resides at the caudal end of the medulla,plays a pivotal role in regulating pain perception.Despite extensive research efforts to unravel its mechanisms,the operational intricacies of SRD remain poorly understood.Advances in experimental methodologies such as brain imaging and chemogenetics have facilitated deeper investigations into the involvement of SRD in various pain disorders.This comprehensive review aims to analyze 36 years(1989–2024)of preclinical research highlighting the critical role of SRD in diffuse noxious inhibitory control(DNIC),also known as conditioned pain modulation(CPM)in humans,and its interconnected neural circuits.Moreover,this review explores the neural circuits related to SRD,including locus coeruleus(LC)-SRD,parabrachial nucleus(PBN)-SRD,rostroventromedial medulla(RVM)-ventrolateral medulla(VLM)-SRD,anterior cingulate cortex(ACC)-SRD,medial medullary reticular formation(mMRF)-SRD,and dorsal striatum(DS)-SRD.Their activation also plays a significant role in analgesia.The pivotal roles of neurotransmitters such asμ-opioid receptor(MOR),noradrenaline,and metabotropic glutamate receptor 7(mGluR7)in modulating SRD responsiveness to pain stimuli are also discussed,as are the influences of SRD on different pain types.This review identified promising avenues for innovative analgesic treatments by shedding light on potential therapeutic strategies targeting SRD.展开更多
Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat...Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.展开更多
This meta-analysis examines 45 peer-reviewed studies(1950-2023)analysing 320 piano score editions from the Royal Conservatory of Music(RCM)Archive,employing robust statistical methods to quantify pedagogical evolution...This meta-analysis examines 45 peer-reviewed studies(1950-2023)analysing 320 piano score editions from the Royal Conservatory of Music(RCM)Archive,employing robust statistical methods to quantify pedagogical evolution.The data reveal a 42%increase in fingering density within post-2000 editions(Hedges’g=0.41,p<0.001,CI[0.28,0.54]),with Romantic works showing the highest variability(g=0.59 vs.Baroque g=0.12).Strong correlations emerged between editorial changes and pedagogical trends(r=0.67,p=0.002),particularly adopting ergonomic techniques post-1980.Performance data indicate modern editions improve advanced student outcomes by 12%(OR=1.12[1.05,1.19])but may overwhelm beginners(error rate+18%).The study establishes empirical evidence for three pedagogical epochs:technical rigor(pre-1980),transitional(1980-2000),and expressive flexibility(post-2000).These findings withstand publication bias tests(Egger’s t=1.2,p=0.24)and significantly affect curriculum design and historical performance practice.展开更多
Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,...Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.展开更多
The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)netw...The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)networks.However,the transmission of STAR-RIS enhanced NOMA networks performance is severely limited due to the inter-user interference(IUI)on multi-user detections.To mitigate this drawback,we propose a generalized quadrature spatial modulation(GQSM)aided STAR-RIS in conjunction with the NOMA scheme,termed STARRIS-NOMA-GQSM,to improve the performance of the corresponding NGMA network.By STAR-RISNOMA-GQSM,the information bits for all users in transmission and reflection zones are transmitted via orthogonal signal domains to eliminate the IUI so as to greatly improve the system performance.The lowcomplexity detection and upper-bounded bit error rate(BER)of STAR-RIS-NOMA-GQSM are both studied to evaluate its feasibility and performance.Moreover,by further utilizing index modulation(IM),we propose an enhanced STAR-RIS-NOMA-GQSM scheme,termed E-STAR-RIS-NOMA-GQSM,to enhance the transmission rate by dynamically adjusting reflection patterns in both transmission and reflection zones.Simulation results show that the proposed original and enhanced scheme significantly outperform the conventional STAR-RIS-NOMA and also confirm the precision of the theoretical analysis of the upper-bounded BER.展开更多
文摘【目的】针对几何误差和非几何误差导致远程运动中心(Remote Center of Motion,RCM)机械臂运动过程中产生RCM约束点位置误差,进而存在一定的安全性问题,提出了一种微创手术机器人RCM机械臂广义运动学误差建模与补偿方法。【方法】首先,基于切比雪夫多项式建立表征几何误差和非几何误差引起的关节相关运动学误差的误差模型;然后,通过最小二乘法对误差模型中的多项式系数和运动学参数误差进行辨识;最后,采用关节空间补偿的方法,以降低RCM约束点位置误差。【结果】试验结果表明,补偿后的RCM约束点位置误差由2.7261 mm减小到0.6415 mm,减小了约76.5%。
基金supports from National Key Research and Development Program of China(2021YFB2800703)Sichuan Province Science and Technology Support Program(25QNJJ2419)+1 种基金National Natural Science Foundation of China(U22A2008,12404484)Laoshan Laboratory Science and Technology Innovation Project(LSKJ202200801).
文摘Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.
基金the funding and generous support of the National Natural Science Foundation of China(52103263,52271249)the Key Project of International Science&Technology Cooperation of Shaanxi Province(2023-GHZD-09)+5 种基金the Key Project of Science Foundation of Education Department of Shaanxi Province(22JY011)the Key Project of Scientific Research and Development of Shaanxi Province(2023GXLH-070)the Qinchuangyuan"Scientist+Engineer"Team of Shaanxi Province(2023KXJ-069)the Key Research and Development Program of Shaanxi(2023-YBGY-488)the Sci-tech Innovation Team of Shaanxi Province(2024RS-CXTD-46)the Key Research and Development Program of Shaanxi Province(2020ZDLGY13-11).
文摘All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.
基金supported by National Natural Science Foundation of China(62174164,U23A20568,and U22A2075)National Key Research and Development Project(2021YFA1202600)+2 种基金Talent Plan of Shanghai Branch,Chinese Academy of Sciences(CASSHB-QNPD-2023-022)Ningbo Technology Project(2022A-007-C)Ningbo Key Research and Development Project(2023Z021).
文摘The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272103 and 52072010)Beijing Natural Science Foundation(Grant Nos.2242029 and JL23004).
文摘High temperature piezoelectric energy harvester(HTPEH)is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors.However,simultaneously excellent performances,including high figure of merit(FOM),insulation resistivity(ρ)and depolarization temperature(Td)are indispensable but hard to achieve in lead-free piezoceramics,especially operating at 250°C has not been reported before.Herein,well-balanced performances are achieved in BiFeO3–BaTiO3 ceramics via innovative defect engineering with respect to delicate manganese doping.Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization,regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole,comprehensive excellent electrical performances(Td=340°C,ρ250°C>10^(7)Ωcm and FOM_(250°C)=4905×10^(–15)m^(2)N^(−1))are realized at the solid solubility limit of manganese ions.The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250°C with high energy conversion efficiency(η=11.43%).These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements,paving a new way in developing selfpowered wireless sensors working in HT environments.
基金jointly supported by projects of the National Natural Science Foundation of China [grant numbers 42141017 and 41975112]。
文摘El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.
文摘Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.
基金supported by“National Natural Science Foundation of China(U21A20171,U20A20245)”“Hubei Provincial Natural Science Foundation of China(2023AFA010)”+1 种基金“Independent Innovation Projects of the Hubei Longzhong Laboratory(2022ZZ-09)”“Social Public Welfare and Basic Research Special Project of Zhongshan(2020B2015).”。
文摘Two-terminal(2-T)perovskite(PVK)/CuIn(Ga)Se_(2)(CIGS)tandem solar cells(TSCs)have been considered as an ideal tandem cell because of their best bandgap matching regarding to Shockley–Queisser(S–Q)limits.However,the nature of the irregular rough morphology of commercial CIGS prevents people from improving tandem device performances.In this paper,D-homoserine lactone hydrochloride is proven to improve coverage of PVK materials on irregular rough CIGS surfaces and also passivate bulk defects by modulating the growth of PVK crystals.In addition,the minority carriers near the PVK/C60 interface and the incompletely passivated trap states caused interface recombination.A surface reconstruction with 2-thiopheneethylammonium iodide and N,N-dimethylformamide assisted passivates the defect sites located at the surface and grain boundaries.Meanwhile,LiF is used to create this field effect,repelling hole carriers away from the PVK and C60 interface and thus reducing recombination.As a result,a 2-T PVK/CIGS tandem yielded a power conversion efficiency of 24.6%(0.16 cm^(2)),one of the highest results for 2-T PVK/CIGS TSCs to our knowledge.This validation underscores the potential of our methodology in achieving superior performance in PVK/CIGS tandem solar cells.
基金funded by the Key Program of the National Natural Science Foundation of China(No.82130122).
文摘The subnucleus reticularis dorsalis(SRD),also known as the dorsal reticular nucleus(DRt)or dorsal medullary reticular nucleus(MdD),which resides at the caudal end of the medulla,plays a pivotal role in regulating pain perception.Despite extensive research efforts to unravel its mechanisms,the operational intricacies of SRD remain poorly understood.Advances in experimental methodologies such as brain imaging and chemogenetics have facilitated deeper investigations into the involvement of SRD in various pain disorders.This comprehensive review aims to analyze 36 years(1989–2024)of preclinical research highlighting the critical role of SRD in diffuse noxious inhibitory control(DNIC),also known as conditioned pain modulation(CPM)in humans,and its interconnected neural circuits.Moreover,this review explores the neural circuits related to SRD,including locus coeruleus(LC)-SRD,parabrachial nucleus(PBN)-SRD,rostroventromedial medulla(RVM)-ventrolateral medulla(VLM)-SRD,anterior cingulate cortex(ACC)-SRD,medial medullary reticular formation(mMRF)-SRD,and dorsal striatum(DS)-SRD.Their activation also plays a significant role in analgesia.The pivotal roles of neurotransmitters such asμ-opioid receptor(MOR),noradrenaline,and metabotropic glutamate receptor 7(mGluR7)in modulating SRD responsiveness to pain stimuli are also discussed,as are the influences of SRD on different pain types.This review identified promising avenues for innovative analgesic treatments by shedding light on potential therapeutic strategies targeting SRD.
基金supported by the External Cooperation Program of Science and Technology of Fujian Province,China(2024I0016)the Fundamental Research Funds for the Central Universities(ZQN-1005).
文摘Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.
文摘This meta-analysis examines 45 peer-reviewed studies(1950-2023)analysing 320 piano score editions from the Royal Conservatory of Music(RCM)Archive,employing robust statistical methods to quantify pedagogical evolution.The data reveal a 42%increase in fingering density within post-2000 editions(Hedges’g=0.41,p<0.001,CI[0.28,0.54]),with Romantic works showing the highest variability(g=0.59 vs.Baroque g=0.12).Strong correlations emerged between editorial changes and pedagogical trends(r=0.67,p=0.002),particularly adopting ergonomic techniques post-1980.Performance data indicate modern editions improve advanced student outcomes by 12%(OR=1.12[1.05,1.19])but may overwhelm beginners(error rate+18%).The study establishes empirical evidence for three pedagogical epochs:technical rigor(pre-1980),transitional(1980-2000),and expressive flexibility(post-2000).These findings withstand publication bias tests(Egger’s t=1.2,p=0.24)and significantly affect curriculum design and historical performance practice.
文摘Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.
基金supported in part by Guangdong Basic and Applied Basic Research Foundation under Grants 2023A1515030118 and 2024A1515010012in part by the Guangzhou Science and Technology Project under Grant 2023A03J0110+3 种基金in part by Guangzhou Basic Research Program Municipal School(College)Joint Funding Project under Grant 2025A03J3119in part by National Natural Science Foundation of China under Grant 62173101in part by the Key Discipline Project of Guangzhou Education Bureau under Grant 202255467in part by the Key Laboratory of on-Chip Communication and Sensor Chip of Guangdong Higher Education Institutes under Grant 2023KSYS002。
文摘The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)networks.However,the transmission of STAR-RIS enhanced NOMA networks performance is severely limited due to the inter-user interference(IUI)on multi-user detections.To mitigate this drawback,we propose a generalized quadrature spatial modulation(GQSM)aided STAR-RIS in conjunction with the NOMA scheme,termed STARRIS-NOMA-GQSM,to improve the performance of the corresponding NGMA network.By STAR-RISNOMA-GQSM,the information bits for all users in transmission and reflection zones are transmitted via orthogonal signal domains to eliminate the IUI so as to greatly improve the system performance.The lowcomplexity detection and upper-bounded bit error rate(BER)of STAR-RIS-NOMA-GQSM are both studied to evaluate its feasibility and performance.Moreover,by further utilizing index modulation(IM),we propose an enhanced STAR-RIS-NOMA-GQSM scheme,termed E-STAR-RIS-NOMA-GQSM,to enhance the transmission rate by dynamically adjusting reflection patterns in both transmission and reflection zones.Simulation results show that the proposed original and enhanced scheme significantly outperform the conventional STAR-RIS-NOMA and also confirm the precision of the theoretical analysis of the upper-bounded BER.