GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a ...GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein–protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.展开更多
The level 3 case for Ramanujan-type series has been considered as the most mysterious and the most challenging,out of all possible levels for Ramanujan-type series.This motivates the development of new techniques for ...The level 3 case for Ramanujan-type series has been considered as the most mysterious and the most challenging,out of all possible levels for Ramanujan-type series.This motivates the development of new techniques for constructing Ramanujan-type series of level 3.Chan and Liaw introduced an alternating analogue of the Borwein brothers’identity for Ramanujan-type series of level 3;subsequently,Chan,Liaw,and Tian formulated another proof of the Chan–Liaw identity,via the use of Ramanujan’s class invariant.Using the elliptic lambda function and the elliptic alpha function,we prove,via a limiting case of the Kummer–Goursat transformation,a new identity for evaluating the summands for alternating Ramanujan-type series of level 3,and we apply this new identity to prove three conjectured formulas for quadratic-irrational,Ramanujan-type series that had been discovered via numerical experiments with Maple in 2012 by Aldawoud.We also apply our identity to prove a new Ramanujan-type series of level 3 with a quartic convergence rate and quartic coefficients.展开更多
Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous...Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.展开更多
Lignans have been established as a privileged scaffold in drug discovery,particularly in anticancer and antioxidant properties.Concise and efficient construction of lignans and their derivatives in a single operation ...Lignans have been established as a privileged scaffold in drug discovery,particularly in anticancer and antioxidant properties.Concise and efficient construction of lignans and their derivatives in a single operation holds great medicinal significance for structure-activity relationship studies yet remains challenging.Drawing inspiration from the biosynthesis of lignans,we present a general,high-step-economy palladium-catalyzed reaction that converts simple chemical feedstocks into dehydrodibenzylbutyrolactone lignans through the in-situ construction and coupling of two phenylpropanoid molecules.The diversity of organoboronic acids and the editability of enyne provide a powerful platform for the rapid construction of lignan libraries,featuring 82 lignans analogs,collective syntheses of 10 distinct lignan skeletons,and 13 hybrid molecules combining pharmacophore fragments with drug and derivatives.The subtle combination of phosphine ligands with quinones for switching chemoselectivity is vital to the success of this protocol.展开更多
The modular design pattern revolutionizes the monolithic morphology of traditional spacecraft into the reconfigurable combination of modular units.However,due to the morphological changes,the effective takeover contro...The modular design pattern revolutionizes the monolithic morphology of traditional spacecraft into the reconfigurable combination of modular units.However,due to the morphological changes,the effective takeover control of the combination through multiple independent modules,including the controller and actuator modules,remains a challenge.In this paper,a robust takeover control scheme with high allocation accuracy,independent of precise inertia,is proposed for the reconfigurable combination in the presence of the inertia uncertainty,model parameters uncertainty,communication delay,and external disturbance.By reregulating the conditions for performance synthesis into a symmetric form with similar structure,a hybrid non-fragile H_(2)/H_(∞)controller is designed for handling two types of controller gain perturbations,achieving superior performance with less energy consumption through simultaneous perturbation suppression.Moreover,through temporarily storing the allocation signals in the initial stage to cover the upper bound of the communication delay,the proposed distributed dynamic allocation scheme enables the actuator modules to implement the control signals jointly to stabilize the combination.Distinguished from general allocators,the proposed high-precision allocation scheme under communication delay can not only ensure full exploitation of controller performance,but also dynamically adjust allocation coefficients based on energy consumption index of controller modules to prevent actuator saturation.Numerical simulations demonstrate the superiority of the proposed hybrid non-fragile controller and the allocation scheme.展开更多
This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-coo...This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-cooperative target with active maneuverability in front lighting.First,the impulsive orbital game problem is formulated as a turn-based sequential game problem.Second,several typical relative orbit transfers are encapsulated into modules to construct a parameterized action space containing discrete modules and continuous parameters,and multi-pass deep Q-networks(MPDQN)algorithm is used to implement autonomous decision-making.Then,a curriculum learning method is used to gradually increase the difficulty of the training scenario.The backtracking proportional self-play training framework is used to enhance the agent’s ability to defeat inconsistent strategies by building a pool of opponents.The behavior variations of the agents during training indicate that the intelligent game system gradually evolves towards an equilibrium situation.The restraint relations between the agents show that the agents steadily improve the strategy.The influence of various factors on game results is tested.展开更多
A brief concept study of a modular research aircraft with potential applications to Mars exploration is conducted.Considered are dimensional and mass constraints of a launch vehicle payload compartment,mission radius ...A brief concept study of a modular research aircraft with potential applications to Mars exploration is conducted.Considered are dimensional and mass constraints of a launch vehicle payload compartment,mission radius extension applying ground mobility and overall flight envelope extension using fixed-wing aerodynamics.Also,some lessons learned from NASA Mars Ingenuity flights are considered and addressed with few solutions.The modular system includes a fixed-wing design along with a number of smaller autonomous quadcopter UAVs,encapsulated inside a geodesic spherical support through a gimbal mechanism for ground mobility.Analyzed is the feasibility of allocating to these mini drones both scout and mapping tasks of complex terrain such as crater walls,canyons and cave systems that might hold key insights into the planet's geologic history.Once docked with the mothership fixed wing,the mini drones serve as a distributed propulsion system,for vertical take-off and landing and control,completely replacing control surfaces on the flying wing itself,its engine and landing gear.CFD and structural simulations have demonstrated the flight-ability in Mars conditions of a flying wing design along with scout drone prototypes with a pentagon-hexagon geodesic shell.Also demonstrated is the great flexibility of the suggested modular approach for various research applications and mission profiles on Mars and other planets or moons,improving overall reliability and mission radius.展开更多
With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has b...With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has become more critical.Existing design guidelines for protective walls(e.g.,UFC 3-340-02)primarily address mid-and far-field explosions,providing limited insights into near-field effects.Considering the effect of slight slopes(<40°)on reducing maximum reflected overpressure is deemed negligible.This study investigated the effectiveness of a reinforced concrete(RC)modular protection system(MPS)incorpo rating a diagonally tapered wall in attenuating re flected overpressures from closein detonations.Full-scale field experiments using a 51.3 kg TNT charge,representing the explosion energy of a typical hydrogen vessel rupture,demonstrated that a wall with a 7°slope significantly outperformed a vertical wall of equivalent concrete volume in terms of blast resistance.Observed structural responses included cracking,horizontal shear failure,and overturning.Complementary simulations using a validated computational fluid dynamics(CFD)model showed that the tapered wall reduced peak overpressure by 30%-40%compared to an equivalent vertical wall.This result highlights the potential of minor geometric modifications to enhance blast resilience.The tapered design effectively redirects incident blast waves,reducing localized damage while also conserving material,thus preserving modular benefits such as ease of transport and reusability.These findings suggest that diagonally tapered RC-based MPSs can offer a practical and resilient solution for industrial and military applications subject to near-field or sequential blast threats.展开更多
In clinical practice,the irregular shapes of traumas pose a significant challenge in rapidly manufacturing personalized scaffolds.To address these challenges,inspired by LEGO■ bricks,this study proposed a novel conce...In clinical practice,the irregular shapes of traumas pose a significant challenge in rapidly manufacturing personalized scaffolds.To address these challenges,inspired by LEGO■ bricks,this study proposed a novel concept of modular scaffolds and developed an innovative system based on machine vision for their rapid and intelligent assembly tailored to defect shapes.Trapezoidal interfaces effectively connect standardized bone units based on magnesium-doped silicate calcium,ensuring high stability of the modular scaffolds,with compressive strength up to 135 MPa and bending strength up to 17 MPa.Through self-developed defect recognition and reconstruction algorithms,defect recognition and personalized assembly schemes for bone scaffolds can be achieved autonomously.Modular scaffolds seamlessly integrate with surrounding bone tissue,promoting new bone growth,with no apparent differences compared to fully 3D printed integral scaffolds in the skull and femur repair experiments.In summary,the adoption of modular scaffolds not only integrates personalization and standardization but also satisfies the optimal treatment window.展开更多
Urban underutilized spaces,often the secondary by-products of large infrastructure projects,are often overlooked,despite their potential to enhance city life.With meaningful design interventions,these neglected areas ...Urban underutilized spaces,often the secondary by-products of large infrastructure projects,are often overlooked,despite their potential to enhance city life.With meaningful design interventions,these neglected areas can be transformed into inclusive public environments that offer social,environmental,and cultural value.This research investigates how modular,temporary installations beneath Toronto’s Gardiner Expressway,in Canada,can enhance thermal comfort and foster community engagement during the shoulder seasons.Using a multi-step methodology,including literature review,thermal comfort guidelines,site-specific climate analysis,and precedent studies,the research identifies key design strategies tailored to the unique microclimatic and social conditions of under-bridge spaces.The study culminates in the proposal of a flexible system of movable panels that provide wind protection,solar control,and opportunities for gathering,interaction,and rest.By reimagining these unnoticed infrastructure zones as adaptable,climate-responsive public spaces,this research contributes to sustainable urban design and highlights the importance of design strategies that address the challenges of a warming and increasingly variable climate.展开更多
Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,convention...Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.展开更多
Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems...Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.展开更多
Given the rapid growth of sustainable construction strategies globally and the importance of resiliency in civil infrastructure,it is crucial to adopt best practices.Modular construction is one such practice and is co...Given the rapid growth of sustainable construction strategies globally and the importance of resiliency in civil infrastructure,it is crucial to adopt best practices.Modular construction is one such practice and is considered a better alternative to conventional construction in terms of resilience,construction times,resource efficiency,and sustainability.However,the continued expansion of modular construction relies on quantifying and evaluating its sustainability and the purported benefits.This paper develops and checks feasibility through an integrated multi-level decision support framework to empirically evaluate the sustainability performances of single-family residential modular homes.Criteria and indicator development and calculation,benchmark scale establishment,quantitative and qualitative data collection from literature and surveys,and multi-criteria decision analysis are unique aspects of this framework.The results of the two case studies located in the Okanagan region,Canada showed that modular homes perform at a higher level of sustainability than their conventional counterparts across multiple metrics and levels related to environmental and economic factors.The modular homes scored eco-efficiency values of 62.5 and 56.0,respectively and fell into higher performance range.The proposed frame-work offers flexibility in examining different dimensions of sustainability,providing valuable insights into the key parameters that need to be addressed to enhance overall sustainability.This research,which integrates life cycle thinking and decision-making,helps the construction industry and,municipalities,governments,and pol-icymakers in making informed decisions on the selection of suitable construction methods in city developments and move towards a more resilient and sustainable sector.展开更多
Submodule capacitor aging poses significant challenges to the safe operation of modular multilevel converter(MMC)systems.Traditional detection methods rely predominantly on offline tests,lacking real-time evaluation c...Submodule capacitor aging poses significant challenges to the safe operation of modular multilevel converter(MMC)systems.Traditional detection methods rely predominantly on offline tests,lacking real-time evaluation capabilities.Moreover,existing online approaches require additional sampling channels,thereby increasing system complexity and costs.To address these issues,this paper proposes an online evaluation method for submodule capacitor aging based on CapAgingNet.Initially,an MMC system simulation platform is developed to examine the effects of submodule capacitor aging on system operational characteristics and to create a dataset of submodule capacitor switching states.Subsequently,the CapAgingNet model is introduced,incorporating key technical modules to enhance performance:the Deep Stem module,which extracts larger receptive fields through multiple convolution layers and mitigates the impact of data sparsity in capacitor aging on feature extraction;the efficient channel attention(ECA)module,utilizing onedimensional convolution for dynamic weighting to adjust the importance of each channel,thereby enhancing the ability of the model to process high-dimensional features in capacitor aging data;and the multiscale feature fusion(MSF)module,which integrates capacitor aging information across different scales by combining fine-grained and coarse-grained features,thus improving the capacity of the model to capture high-frequency variation characteristics.The experimental results reveal that the CapAgingNet model achieves a TOP-1 accuracy of 95.32%and a macro-averaged F1 score of 95.49%on the test set,thereby providing effective technical support for online monitoring of submodule capacitor aging.展开更多
With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality st...With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality stability.To address the challenge that existing partitioning methods are inad-equate for the planning and operation needs of active distribution networks under frequently changing power flow conditions,a three-stage dynamic partitioning approach is proposed based on an im-proved sand cat swarm optimization(ISCSO)algorithm.Firstly,a comprehensive dynamic partitio-ning index is developed by integrating both structural and functional metrics,including modularity,voltage regulation capability,and regional renewable energy accommodation capacity.Secondly,to overcome the limitations of the conventional sand cat swarm optimization,namely its weak global ex-ploration ability and tendency to fall into local optima in the later optimization stages,chaotic map-ping is employed to initialize a uniformly distributed population.A nonlinear sensitivity mechanism is introduced to balance global exploration and local exploitation,alongside the design of a particle encoding and position updating scheme tailored for dynamic partitioning.Furthermore,a‘state re-tention-local adjustment-global reconstruction’partitioning structure is developed.To avoid unnec-essary partition changes under minor source-load fluctuations,the concept of overlapping nodes is introduced,enabling fine-tuned adjustments under such conditions.Finally,two experimental sce-narios are designed to validate the proposed method.Simulation results demonstrate strong electrical coupling performance and show that the method enhances voltage regulation and renewable energy integration capabilities across regions.展开更多
Radial head(RH)arthroplasty(RHA)has emerged as a critical intervention in the management of complex elbow fractures,particularly Mason type III and IV injuries where the native RH is irreparable.Beyond its role in pai...Radial head(RH)arthroplasty(RHA)has emerged as a critical intervention in the management of complex elbow fractures,particularly Mason type III and IV injuries where the native RH is irreparable.Beyond its role in pain relief and joint congruity,RHA serves as a biomechanical cornerstone for restoring the lateral column and ensuring elbow stability,especially in the presence of associated ligamentous injuries or fracture-dislocations.This editorial synthesizes current evidence on RHA in Mason type III and IV RH fractures,with attention to biomechanical rationale,implant design,and complication trends.Aiming to reaffirm RHA’s position as a vital tool in contemporary elbow trauma care,a simplified treatment algorithm is presented to support individualized surgical decisionmaking.展开更多
The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China.The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient.To...The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China.The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient.To solve this problem,the small friction pendulum bearing(FPB)isolation design is proposed for modular pressurized buildings.Firstly,a simplified model of cross-truss support for the pressurized module is proposed to simplify the modeling and calculation of the pressurized buildings.The reasonability of the simplified model is verified by comparing the refined finite element model.Subsequently,according to the FPB design process for modular pressurized buildings,a small FPB for isolation is provided for a two-story modular pressurized building under 8-degree fortification earthquakes.Lastly,the seismic effectiveness and constructional feasibility of the isolation structure are verified compared with the non-isolated structure using dynamic time-history analysis.The study results show that the size of FPBs for modular pressurized buildings should consider both displacement and dimension requirements to weigh seismic isolation performance and installation feasibility,respectively.When adopting FPBs,the response of the structure is significantly reduced,and the seismic isolation effect is obvious.The proposed construction process can improve the seismic resilience of the prefabricated modular pressurized buildings by replacing post-earthquake damaged components quickly.It provides ideas for the seismic isolation design of the prefabricated modular pressurized buildings in high seismic intensity areas.展开更多
We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(...We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(2)-algebras yield the same condensed topological phase under a two-dimensional anyon condensation process.The relations between different condensable algebras can be translated into their module categories,interpreted physically as gapped domain walls in topological orders.As concrete examples,we interpret the categories of quantum doubles of finite groups and examples beyond group symmetries.Our framework fully elucidates the interplay among condensable𝐸E_(1)-algebras in C,condensable𝐸E_(2)-algebras in C up to 2-Morita equivalence,and Lagrangian algebras in C⊠C.展开更多
This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameter...This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameters;introduces the optimization of intelligent production processes,precision control,and integration of construction technology,and also mentions the verification of full lifecycle applications and quality control;as well as emphasizes the importance of BIM+IoT platform and looks forward to the future.展开更多
As a core course for the Engineering Cost major at Chongqing Institute of Engineering,Engineering Mechanics shoulders the dual mission of cultivating students’mechanical thinking,engineering practical abilities,and p...As a core course for the Engineering Cost major at Chongqing Institute of Engineering,Engineering Mechanics shoulders the dual mission of cultivating students’mechanical thinking,engineering practical abilities,and professional qualities.Centered on the deep integration of the outcome-based education(OBE)concept and curriculum-based ideological and political education,this paper systematically elaborates on the reform paths and implementation strategies from four dimensions-reconstruction of teaching content,innovation of assessment mechanisms,integration of ideological and political elements,and construction of teaching resources-by drawing on the teaching reform practices of Engineering Mechanics courses at multiple universities.Through modular teaching content design,a competency-oriented diversified assessment system,and a method of integrating ideological and political education with local characteristics and engineering case studies,the teaching objectives of“knowledge transmission,ability cultivation,and value shaping”are achieved in a three-in-one manner.Practical results indicate that after the reform,students’engineering practical abilities have significantly improved,with a course objective achievement rate exceeding 0.73,a 23%increase in student satisfaction with the course,and a 35%year-on-year increase in the number of awards won in professional competitions,providing a replicable paradigm for the teaching reform of engineering courses.展开更多
基金partially supported by grants PID2020-115096RB-I00 and PID2023-148273NB-I00 from Ministerio de Ciencia y Universidad (MICIU/AEI)(to EMS)。
文摘GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein–protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.
基金supported by a Killam Postdoctoral Fellowship from the Killam Trusts.
文摘The level 3 case for Ramanujan-type series has been considered as the most mysterious and the most challenging,out of all possible levels for Ramanujan-type series.This motivates the development of new techniques for constructing Ramanujan-type series of level 3.Chan and Liaw introduced an alternating analogue of the Borwein brothers’identity for Ramanujan-type series of level 3;subsequently,Chan,Liaw,and Tian formulated another proof of the Chan–Liaw identity,via the use of Ramanujan’s class invariant.Using the elliptic lambda function and the elliptic alpha function,we prove,via a limiting case of the Kummer–Goursat transformation,a new identity for evaluating the summands for alternating Ramanujan-type series of level 3,and we apply this new identity to prove three conjectured formulas for quadratic-irrational,Ramanujan-type series that had been discovered via numerical experiments with Maple in 2012 by Aldawoud.We also apply our identity to prove a new Ramanujan-type series of level 3 with a quartic convergence rate and quartic coefficients.
文摘Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future.
基金Financial support was provided by the State Key Laboratory of Pulp and Paper Engineering(No.2022PY01)the National Natural Science Foundation of China(Nos.22231002 and 21871095)the Key-Area Research and Development Program of Guangdong Province(No.2020B010188001)。
文摘Lignans have been established as a privileged scaffold in drug discovery,particularly in anticancer and antioxidant properties.Concise and efficient construction of lignans and their derivatives in a single operation holds great medicinal significance for structure-activity relationship studies yet remains challenging.Drawing inspiration from the biosynthesis of lignans,we present a general,high-step-economy palladium-catalyzed reaction that converts simple chemical feedstocks into dehydrodibenzylbutyrolactone lignans through the in-situ construction and coupling of two phenylpropanoid molecules.The diversity of organoboronic acids and the editability of enyne provide a powerful platform for the rapid construction of lignan libraries,featuring 82 lignans analogs,collective syntheses of 10 distinct lignan skeletons,and 13 hybrid molecules combining pharmacophore fragments with drug and derivatives.The subtle combination of phosphine ligands with quinones for switching chemoselectivity is vital to the success of this protocol.
基金co-supported by the National Natural Science Foundation of China(No.12372048)the China Postdoctoral Science Foundation(No.2023M742835)+3 种基金the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515011421)the Aeronautical Science Foundation of China(No.2022Z004053001)the Fundamental Research Funds for the Central Universities,China(No.D5000210833)the Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.20220509)。
文摘The modular design pattern revolutionizes the monolithic morphology of traditional spacecraft into the reconfigurable combination of modular units.However,due to the morphological changes,the effective takeover control of the combination through multiple independent modules,including the controller and actuator modules,remains a challenge.In this paper,a robust takeover control scheme with high allocation accuracy,independent of precise inertia,is proposed for the reconfigurable combination in the presence of the inertia uncertainty,model parameters uncertainty,communication delay,and external disturbance.By reregulating the conditions for performance synthesis into a symmetric form with similar structure,a hybrid non-fragile H_(2)/H_(∞)controller is designed for handling two types of controller gain perturbations,achieving superior performance with less energy consumption through simultaneous perturbation suppression.Moreover,through temporarily storing the allocation signals in the initial stage to cover the upper bound of the communication delay,the proposed distributed dynamic allocation scheme enables the actuator modules to implement the control signals jointly to stabilize the combination.Distinguished from general allocators,the proposed high-precision allocation scheme under communication delay can not only ensure full exploitation of controller performance,but also dynamically adjust allocation coefficients based on energy consumption index of controller modules to prevent actuator saturation.Numerical simulations demonstrate the superiority of the proposed hybrid non-fragile controller and the allocation scheme.
文摘This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-cooperative target with active maneuverability in front lighting.First,the impulsive orbital game problem is formulated as a turn-based sequential game problem.Second,several typical relative orbit transfers are encapsulated into modules to construct a parameterized action space containing discrete modules and continuous parameters,and multi-pass deep Q-networks(MPDQN)algorithm is used to implement autonomous decision-making.Then,a curriculum learning method is used to gradually increase the difficulty of the training scenario.The backtracking proportional self-play training framework is used to enhance the agent’s ability to defeat inconsistent strategies by building a pool of opponents.The behavior variations of the agents during training indicate that the intelligent game system gradually evolves towards an equilibrium situation.The restraint relations between the agents show that the agents steadily improve the strategy.The influence of various factors on game results is tested.
基金funded by the Russian Science Foundation(No.22–49-02047)。
文摘A brief concept study of a modular research aircraft with potential applications to Mars exploration is conducted.Considered are dimensional and mass constraints of a launch vehicle payload compartment,mission radius extension applying ground mobility and overall flight envelope extension using fixed-wing aerodynamics.Also,some lessons learned from NASA Mars Ingenuity flights are considered and addressed with few solutions.The modular system includes a fixed-wing design along with a number of smaller autonomous quadcopter UAVs,encapsulated inside a geodesic spherical support through a gimbal mechanism for ground mobility.Analyzed is the feasibility of allocating to these mini drones both scout and mapping tasks of complex terrain such as crater walls,canyons and cave systems that might hold key insights into the planet's geologic history.Once docked with the mothership fixed wing,the mini drones serve as a distributed propulsion system,for vertical take-off and landing and control,completely replacing control surfaces on the flying wing itself,its engine and landing gear.CFD and structural simulations have demonstrated the flight-ability in Mars conditions of a flying wing design along with scout drone prototypes with a pentagon-hexagon geodesic shell.Also demonstrated is the great flexibility of the suggested modular approach for various research applications and mission profiles on Mars and other planets or moons,improving overall reliability and mission radius.
基金supported by the Dong-A University of the Republic of Korea research fund。
文摘With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has become more critical.Existing design guidelines for protective walls(e.g.,UFC 3-340-02)primarily address mid-and far-field explosions,providing limited insights into near-field effects.Considering the effect of slight slopes(<40°)on reducing maximum reflected overpressure is deemed negligible.This study investigated the effectiveness of a reinforced concrete(RC)modular protection system(MPS)incorpo rating a diagonally tapered wall in attenuating re flected overpressures from closein detonations.Full-scale field experiments using a 51.3 kg TNT charge,representing the explosion energy of a typical hydrogen vessel rupture,demonstrated that a wall with a 7°slope significantly outperformed a vertical wall of equivalent concrete volume in terms of blast resistance.Observed structural responses included cracking,horizontal shear failure,and overturning.Complementary simulations using a validated computational fluid dynamics(CFD)model showed that the tapered wall reduced peak overpressure by 30%-40%compared to an equivalent vertical wall.This result highlights the potential of minor geometric modifications to enhance blast resilience.The tapered design effectively redirects incident blast waves,reducing localized damage while also conserving material,thus preserving modular benefits such as ease of transport and reusability.These findings suggest that diagonally tapered RC-based MPSs can offer a practical and resilient solution for industrial and military applications subject to near-field or sequential blast threats.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY22E050011)National Natural Science Foundation of China(T2121004,51805475)。
文摘In clinical practice,the irregular shapes of traumas pose a significant challenge in rapidly manufacturing personalized scaffolds.To address these challenges,inspired by LEGO■ bricks,this study proposed a novel concept of modular scaffolds and developed an innovative system based on machine vision for their rapid and intelligent assembly tailored to defect shapes.Trapezoidal interfaces effectively connect standardized bone units based on magnesium-doped silicate calcium,ensuring high stability of the modular scaffolds,with compressive strength up to 135 MPa and bending strength up to 17 MPa.Through self-developed defect recognition and reconstruction algorithms,defect recognition and personalized assembly schemes for bone scaffolds can be achieved autonomously.Modular scaffolds seamlessly integrate with surrounding bone tissue,promoting new bone growth,with no apparent differences compared to fully 3D printed integral scaffolds in the skull and femur repair experiments.In summary,the adoption of modular scaffolds not only integrates personalization and standardization but also satisfies the optimal treatment window.
文摘Urban underutilized spaces,often the secondary by-products of large infrastructure projects,are often overlooked,despite their potential to enhance city life.With meaningful design interventions,these neglected areas can be transformed into inclusive public environments that offer social,environmental,and cultural value.This research investigates how modular,temporary installations beneath Toronto’s Gardiner Expressway,in Canada,can enhance thermal comfort and foster community engagement during the shoulder seasons.Using a multi-step methodology,including literature review,thermal comfort guidelines,site-specific climate analysis,and precedent studies,the research identifies key design strategies tailored to the unique microclimatic and social conditions of under-bridge spaces.The study culminates in the proposal of a flexible system of movable panels that provide wind protection,solar control,and opportunities for gathering,interaction,and rest.By reimagining these unnoticed infrastructure zones as adaptable,climate-responsive public spaces,this research contributes to sustainable urban design and highlights the importance of design strategies that address the challenges of a warming and increasingly variable climate.
基金supported by the National Key Research and Development Program of China(2022YFB3305900)the National Natural Science Foundation of China(Key Program)(62136003)+2 种基金the National Natural Science Foundation of China(62394345)the Major Science and Technology Projects of Longmen Laboratory(LMZDXM202206)the Fundamental Research Funds for the Central Universities.
文摘Sequential-modular-based process flowsheeting software remains an indispensable tool for process design,control,and optimization.Yet,as the process industry advances in intelligent operation and maintenance,conventional sequential-modular-based process-simulation techniques present challenges regarding computationally intensive calculations and significant central processing unit(CPU)time requirements,particularly in large-scale design and optimization tasks.To address these challenges,this paper proposes a novel process-simulation parallel computing framework(PSPCF).This framework achieves layered parallelism in recycling processes at the unit operation level.Notably,PSPCF introduces a groundbreaking concept of formulating simulation problems as task graphs and utilizes Taskflow,an advanced task graph computing system,for hierarchical parallel scheduling and the execution of unit operation tasks.PSPCF also integrates an advanced work-stealing scheme to automatically balance thread resources with the demanding workload of unit operation tasks.For evaluation,both a simpler parallel column process and a more complex cracked gas separation process were simulated on a flowsheeting platform using PSPCF.The framework demonstrates significant time savings,achieving over 60%reduction in processing time for the simpler process and a 35%–40%speed-up for the more complex separation process.
文摘Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.
文摘Given the rapid growth of sustainable construction strategies globally and the importance of resiliency in civil infrastructure,it is crucial to adopt best practices.Modular construction is one such practice and is considered a better alternative to conventional construction in terms of resilience,construction times,resource efficiency,and sustainability.However,the continued expansion of modular construction relies on quantifying and evaluating its sustainability and the purported benefits.This paper develops and checks feasibility through an integrated multi-level decision support framework to empirically evaluate the sustainability performances of single-family residential modular homes.Criteria and indicator development and calculation,benchmark scale establishment,quantitative and qualitative data collection from literature and surveys,and multi-criteria decision analysis are unique aspects of this framework.The results of the two case studies located in the Okanagan region,Canada showed that modular homes perform at a higher level of sustainability than their conventional counterparts across multiple metrics and levels related to environmental and economic factors.The modular homes scored eco-efficiency values of 62.5 and 56.0,respectively and fell into higher performance range.The proposed frame-work offers flexibility in examining different dimensions of sustainability,providing valuable insights into the key parameters that need to be addressed to enhance overall sustainability.This research,which integrates life cycle thinking and decision-making,helps the construction industry and,municipalities,governments,and pol-icymakers in making informed decisions on the selection of suitable construction methods in city developments and move towards a more resilient and sustainable sector.
基金supported by China Yangtze Power Co.,Ltd.(No.ZSF2502001).
文摘Submodule capacitor aging poses significant challenges to the safe operation of modular multilevel converter(MMC)systems.Traditional detection methods rely predominantly on offline tests,lacking real-time evaluation capabilities.Moreover,existing online approaches require additional sampling channels,thereby increasing system complexity and costs.To address these issues,this paper proposes an online evaluation method for submodule capacitor aging based on CapAgingNet.Initially,an MMC system simulation platform is developed to examine the effects of submodule capacitor aging on system operational characteristics and to create a dataset of submodule capacitor switching states.Subsequently,the CapAgingNet model is introduced,incorporating key technical modules to enhance performance:the Deep Stem module,which extracts larger receptive fields through multiple convolution layers and mitigates the impact of data sparsity in capacitor aging on feature extraction;the efficient channel attention(ECA)module,utilizing onedimensional convolution for dynamic weighting to adjust the importance of each channel,thereby enhancing the ability of the model to process high-dimensional features in capacitor aging data;and the multiscale feature fusion(MSF)module,which integrates capacitor aging information across different scales by combining fine-grained and coarse-grained features,thus improving the capacity of the model to capture high-frequency variation characteristics.The experimental results reveal that the CapAgingNet model achieves a TOP-1 accuracy of 95.32%and a macro-averaged F1 score of 95.49%on the test set,thereby providing effective technical support for online monitoring of submodule capacitor aging.
基金Supported by the Technology Project of State Grid Corporation Headquarters(No.5100-202322029A-1-1-ZN)the 2024 Youth Science Foun-dation Project(No.62303006).
文摘With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality stability.To address the challenge that existing partitioning methods are inad-equate for the planning and operation needs of active distribution networks under frequently changing power flow conditions,a three-stage dynamic partitioning approach is proposed based on an im-proved sand cat swarm optimization(ISCSO)algorithm.Firstly,a comprehensive dynamic partitio-ning index is developed by integrating both structural and functional metrics,including modularity,voltage regulation capability,and regional renewable energy accommodation capacity.Secondly,to overcome the limitations of the conventional sand cat swarm optimization,namely its weak global ex-ploration ability and tendency to fall into local optima in the later optimization stages,chaotic map-ping is employed to initialize a uniformly distributed population.A nonlinear sensitivity mechanism is introduced to balance global exploration and local exploitation,alongside the design of a particle encoding and position updating scheme tailored for dynamic partitioning.Furthermore,a‘state re-tention-local adjustment-global reconstruction’partitioning structure is developed.To avoid unnec-essary partition changes under minor source-load fluctuations,the concept of overlapping nodes is introduced,enabling fine-tuned adjustments under such conditions.Finally,two experimental sce-narios are designed to validate the proposed method.Simulation results demonstrate strong electrical coupling performance and show that the method enhances voltage regulation and renewable energy integration capabilities across regions.
文摘Radial head(RH)arthroplasty(RHA)has emerged as a critical intervention in the management of complex elbow fractures,particularly Mason type III and IV injuries where the native RH is irreparable.Beyond its role in pain relief and joint congruity,RHA serves as a biomechanical cornerstone for restoring the lateral column and ensuring elbow stability,especially in the presence of associated ligamentous injuries or fracture-dislocations.This editorial synthesizes current evidence on RHA in Mason type III and IV RH fractures,with attention to biomechanical rationale,implant design,and complication trends.Aiming to reaffirm RHA’s position as a vital tool in contemporary elbow trauma care,a simplified treatment algorithm is presented to support individualized surgical decisionmaking.
基金supported by Technology Research and Development Program of China Construction Advanced Technology Research Institute(Grant No.XJY-2024-16)。
文摘The seismic intensity is generally high in the Qinghai-Tibet Plateau region of China.The seismic performance of the new prefabricated modular pressurized buildings used to solve the plateau response is insufficient.To solve this problem,the small friction pendulum bearing(FPB)isolation design is proposed for modular pressurized buildings.Firstly,a simplified model of cross-truss support for the pressurized module is proposed to simplify the modeling and calculation of the pressurized buildings.The reasonability of the simplified model is verified by comparing the refined finite element model.Subsequently,according to the FPB design process for modular pressurized buildings,a small FPB for isolation is provided for a two-story modular pressurized building under 8-degree fortification earthquakes.Lastly,the seismic effectiveness and constructional feasibility of the isolation structure are verified compared with the non-isolated structure using dynamic time-history analysis.The study results show that the size of FPBs for modular pressurized buildings should consider both displacement and dimension requirements to weigh seismic isolation performance and installation feasibility,respectively.When adopting FPBs,the response of the structure is significantly reduced,and the seismic isolation effect is obvious.The proposed construction process can improve the seismic resilience of the prefabricated modular pressurized buildings by replacing post-earthquake damaged components quickly.It provides ideas for the seismic isolation design of the prefabricated modular pressurized buildings in high seismic intensity areas.
基金supported by Research Grants Council(RGC),University Grants Committee(UGC)of Hong Kong(ECS No.24304722)。
文摘We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(2)-algebras yield the same condensed topological phase under a two-dimensional anyon condensation process.The relations between different condensable algebras can be translated into their module categories,interpreted physically as gapped domain walls in topological orders.As concrete examples,we interpret the categories of quantum doubles of finite groups and examples beyond group symmetries.Our framework fully elucidates the interplay among condensable𝐸E_(1)-algebras in C,condensable𝐸E_(2)-algebras in C up to 2-Morita equivalence,and Lagrangian algebras in C⊠C.
文摘This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameters;introduces the optimization of intelligent production processes,precision control,and integration of construction technology,and also mentions the verification of full lifecycle applications and quality control;as well as emphasizes the importance of BIM+IoT platform and looks forward to the future.
文摘As a core course for the Engineering Cost major at Chongqing Institute of Engineering,Engineering Mechanics shoulders the dual mission of cultivating students’mechanical thinking,engineering practical abilities,and professional qualities.Centered on the deep integration of the outcome-based education(OBE)concept and curriculum-based ideological and political education,this paper systematically elaborates on the reform paths and implementation strategies from four dimensions-reconstruction of teaching content,innovation of assessment mechanisms,integration of ideological and political elements,and construction of teaching resources-by drawing on the teaching reform practices of Engineering Mechanics courses at multiple universities.Through modular teaching content design,a competency-oriented diversified assessment system,and a method of integrating ideological and political education with local characteristics and engineering case studies,the teaching objectives of“knowledge transmission,ability cultivation,and value shaping”are achieved in a three-in-one manner.Practical results indicate that after the reform,students’engineering practical abilities have significantly improved,with a course objective achievement rate exceeding 0.73,a 23%increase in student satisfaction with the course,and a 35%year-on-year increase in the number of awards won in professional competitions,providing a replicable paradigm for the teaching reform of engineering courses.