期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
MNN-XSS:Modular Neural Network Based Approach for XSS Attack Detection
1
作者 Ahmed Abdullah Alqarni Nizar Alsharif +3 位作者 Nayeem Ahmad Khan Lilia Georgieva Eric Pardade Mohammed Y.Alzahrani 《Computers, Materials & Continua》 SCIE EI 2022年第2期4075-4085,共11页
The rapid growth and uptake of network-based communication technologies have made cybersecurity a significant challenge as the number of cyber-attacks is also increasing.A number of detection systems are used in an at... The rapid growth and uptake of network-based communication technologies have made cybersecurity a significant challenge as the number of cyber-attacks is also increasing.A number of detection systems are used in an attempt to detect known attacks using signatures in network traffic.In recent years,researchers have used different machine learning methods to detect network attacks without relying on those signatures.The methods generally have a high false-positive rate which is not adequate for an industry-ready intrusion detection product.In this study,we propose and implement a new method that relies on a modular deep neural network for reducing the false positive rate in the XSS attack detection system.Experiments were performed using a dataset consists of 1000 malicious and 10000 benign sample.The model uses 50 features selected by using Pearson correlation method and will be used in the detection and preventions of XSS attacks.The results obtained from the experiments depict improvement in the detection accuracy as high as 99.96%compared to other approaches. 展开更多
关键词 CYBERSECURITY XSS deep learning modular neural network
在线阅读 下载PDF
Inverse stochastic resonance in modular neural network with synaptic plasticity
2
作者 于永涛 杨晓丽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期45-52,共8页
This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s... This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s synaptic learning rule is employed to characterize synaptic plasticity in this network. Meanwhile, the effects of synaptic plasticity on the ISR dynamics are investigated. Through numerical simulations, it is found that the mean firing rate curve under the influence of bounded noise has an inverted bell-like shape, which implies the appearance of ISR. Moreover, synaptic plasticity with smaller learning rate strengthens this ISR phenomenon, while synaptic plasticity with larger learning rate weakens or even destroys it. On the other hand, the mean firing rate curve under the influence of time delay is found to exhibit a decaying oscillatory process, which represents the emergence of multiple ISR. However, the multiple ISR phenomenon gradually weakens until it disappears with increasing noise amplitude. On the same time, synaptic plasticity with smaller learning rate also weakens this multiple ISR phenomenon, while synaptic plasticity with larger learning rate strengthens it. Furthermore, we find that changes of synaptic learning rate can induce the emergence of ISR phenomenon. We hope these obtained results would provide new insights into the study of ISR in neuroscience. 展开更多
关键词 inverse stochastic resonance synaptic plasticity modular neural network
原文传递
Modular neural network for edge-based detection of early-stage IoT botnet
3
作者 Duaa Alqattan Varun Ojha +3 位作者 Fawzy Habib Ayman Noor Graham Morgan Rajiv Ranjan 《High-Confidence Computing》 2025年第1期1-14,共14页
The Internet of Things(IoT)has led to rapid growth in smart cities.However,IoT botnet-based attacks against smart city systems are becoming more prevalent.Detection methods for IoT botnet-based attacks have been the s... The Internet of Things(IoT)has led to rapid growth in smart cities.However,IoT botnet-based attacks against smart city systems are becoming more prevalent.Detection methods for IoT botnet-based attacks have been the subject of extensive research,but the identification of early-stage behaviour of the IoT botnet prior to any attack remains a largely unexplored area that could prevent any attack before it is launched.Few studies have addressed the early stages of IoT botnet detection using monolithic deep learning algorithms that could require more time for training and detection.We,however,propose an edge-based deep learning system for the detection of the early stages of IoT botnets in smart cities.The proposed system,which we call EDIT(Edge-based Detection of early-stage IoT Botnet),aims to detect abnormalities in network communication traffic caused by early-stage IoT botnets based on the modular neural network(MNN)method at multi-access edge computing(MEC)servers.MNN can improve detection accuracy and efficiency by leveraging parallel computing on MEC.According to the findings,EDIT has a lower false-negative rate compared to a monolithic approach and other studies.At the MEC server,EDIT takes as little as 16 ms for the detection of an IoT botnet. 展开更多
关键词 modular neural network IoT botnet Edge computing Botnet detection
在线阅读 下载PDF
Prediction of NO_(x)concentration using modular long short-term memory neural network for municipal solid waste incineration 被引量:4
4
作者 Haoshan Duan Xi Meng +1 位作者 Jian Tang Junfei Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期46-57,共12页
Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emis... Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emission controlling.In this study,a modular long short-term memory(M-LSTM)network is developed to design an efficient prediction model for NO_(x)concentration.First,the fuzzy C means(FCM)algorithm is utilized to divide the task into several sub-tasks,aiming to realize the divide-and-conquer ability for complex task.Second,long short-term memory(LSTM)neural networks are applied to tackle corresponding sub-tasks,which can improve the prediction accuracy of the sub-networks.Third,a cooperative decision strategy is designed to guarantee the generalization performance during the testing or application stage.Finally,after being evaluated by a benchmark simulation,the proposed method is applied to a real MSWI process.And the experimental results demonstrate the considerable prediction ability of the M-LSTM network. 展开更多
关键词 Municipal solid waste incineration NO_(x)concentration prediction modular neural network Model
在线阅读 下载PDF
Synchronization transition of a modular neural network containing subnetworks of different scales 被引量:1
5
作者 Weifang HUANG Lijian YANG +2 位作者 Xuan ZHAN Ziying FU Ya JIA 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第10期1458-1470,共13页
Time delay and coupling strength are important factors that affect the synchronization of neural networks.In this study,a modular neural network containing subnetworks of different scales was constructed using the Hod... Time delay and coupling strength are important factors that affect the synchronization of neural networks.In this study,a modular neural network containing subnetworks of different scales was constructed using the Hodgkin–Huxley(HH)neural model;i.e.,a small-scale random network was unidirectionally connected to a large-scale small-world network through chemical synapses.Time delays were found to induce multiple synchronization transitions in the network.An increase in coupling strength also promoted synchronization of the network when the time delay was an integer multiple of the firing period of a single neuron.Considering that time delays at different locations in a modular network may have different effects,we explored the influence of time delays within each subnetwork and between two subnetworks on the synchronization of modular networks.We found that when the subnetworks were well synchronized internally,an increase in the time delay within both subnetworks induced multiple synchronization transitions of their own.In addition,the synchronization state of the small-scale network affected the synchronization of the large-scale network.It was surprising to find that an increase in the time delay between the two subnetworks caused the synchronization factor of the modular network to vary periodically,but it had essentially no effect on the synchronization within the receiving subnetwork.By analyzing the phase difference between the two subnetworks,we found that the mechanism of the periodic variation of the synchronization factor of the modular network was the periodic variation of the phase difference.Finally,the generality of the results was demonstrated by investigating modular networks at different scales. 展开更多
关键词 Hodgkin-Huxley neuron modular neural network SUBnetwork SYNCHRONIZATION Transmission delay
原文传递
A Short-Term Climate Prediction Model Based on a Modular Fuzzy Neural Network 被引量:6
6
作者 金龙 金健 姚才 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第3期428-435,共8页
In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the ... In terms of the modular fuzzy neural network (MFNN) combining fuzzy c-mean (FCM) cluster and single-layer neural network, a short-term climate prediction model is developed. It is found from modeling results that the MFNN model for short-term climate prediction has advantages of simple structure, no hidden layer and stable network parameters because of the assembling of sound functions of the self-adaptive learning, association and fuzzy information processing of fuzzy mathematics and neural network methods. The case computational results of Guangxi flood season (JJA) rainfall show that the mean absolute error (MAE) and mean relative error (MRE) of the prediction during 1998-2002 are 68.8 mm and 9.78%, and in comparison with the regression method, under the conditions of the same predictors and period they are 97.8 mm and 12.28% respectively. Furthermore, it is also found from the stability analysis of the modular model that the change of the prediction results of independent samples with training times in the stably convergent interval of the model is less than 1.3 mm. The obvious oscillation phenomenon of prediction results with training times, such as in the common back-propagation neural network (BPNN) model, does not occur, indicating a better practical application potential of the MFNN model. 展开更多
关键词 modular fuzzy neural network short-term climate prediction flood season
在线阅读 下载PDF
Aeromagnetic Compensation Algorithm Based on Levenberg-Marquard Neural Network
7
作者 Li LIU Qingfeng XU +3 位作者 Hui GU Lei ZHOU Zhenfu LIU Lili CAO 《Journal of Geodesy and Geoinformation Science》 2021年第4期74-83,共10页
The magnetic compensation of aeromagnetic survey is an important calibration work,which has a great impact on the accuracy of measurement.In an aeromagnetic survey flight,measurement data consists of diurnal variation... The magnetic compensation of aeromagnetic survey is an important calibration work,which has a great impact on the accuracy of measurement.In an aeromagnetic survey flight,measurement data consists of diurnal variation,aircraft maneuver interference field,and geomagnetic field.In this paper,appropriate physical features and the modular feedforward neural network(MFNN)with Levenberg-Marquard(LM)back propagation algorithm are adopted to supervised learn fluctuation of measuring signals and separate the interference magnetic field from the measurement data.LM algorithm is a kind of least square estimation algorithm of nonlinear parameters.It iteratively calculates the jacobian matrix of error performance and the adjustment value of gradient with the regularization method.LM algorithm’s computing efficiency is high and fitting error is very low.The fitting performance and the compensation accuracy of LM-MFNN algorithm are proved to be much better than those of TOLLES-LAWSON(T-L)model with the linear least square(LS)solution by fitting experiments with five different aeromagnetic surveys’data. 展开更多
关键词 modular feedforward neural network aeromagnetic compensation LM back propagation algorithm
在线阅读 下载PDF
Microtube-integrated chips for modular electrical stimulation and 3D confined neural network growth
8
作者 Ye Qiu Xiaoduo Wang +4 位作者 Haibo Yu Jianchen Zheng Jingang Wang Lianqing Liu Wen Jung Li 《Microsystems & Nanoengineering》 2025年第5期477-488,共12页
In vitro neural networks offer a simplified model to study brain nervous system functions and represent a vital platform for investigating cerebral neural activities.Microelectrode array(MEA)chips are commonly used to... In vitro neural networks offer a simplified model to study brain nervous system functions and represent a vital platform for investigating cerebral neural activities.Microelectrode array(MEA)chips are commonly used to construct modular neural networks and enable electrical stimulation and recording for uncovering signal generation and conduction mechanisms.However,conventional two-dimensional(2D)MEA chips face significant limitations,including restricted neuronal growth dimensions and insufficient neuron density.Herein,we present a novel micro-integrated chip featuring a three-dimensional(3D)physical microtube array that facilitates the regulated,confined growth of neurons.The microtube array not only provides a 3D microenvironment for neuronal growth and differentiation but also enhances neuronal network density and structural organization.Furthermore,by integrating the microtube array with a customized MEA,precise electrical stimulation can be applied to modular neural networks.Experimental results demonstrate that electrical stimulation effectively promotes the formation of connection pathways between adjacent 3D neural networks.Variable-parameter electrical stimulation experiments reveal that increasing voltage enhances the Young’s modulus of neurons,highlighting the method’s role in supporting the stable development of neuronal networks.This modular culture platform,combined with precise electrical stimulation,paves the way for constructing high-density 3D neuronal networks and enables synchronous control of modular neural activities.The proposed approach holds significant potential for advancing applications in neuroscience,tissue engineering,and organ-onchip technologies. 展开更多
关键词 modular electrical stimulation electrical stimulation vitro neural networks investigating cerebral neural activitiesmicroelectrode construct modular neural networks microtube integrated chips D confined neural network growth study brain nervous system functions
原文传递
基于模糊Modular神经网络的官厅水库及邻区的地震危险性估计 被引量:4
9
作者 武安绪 吴培稚 张丽芳 《西北地震学报》 CSCD 北大核心 2005年第z1期65-71,共7页
首先介绍了模糊Modular神经网络的原理、建模方法与仿真实验,然后利用该方法把一些常用的地震学指标作为神经网络的输入,未来50年最大震级则作为网络的期望输出,对官厅水库及邻区的地震活动进行学习与最大震级序列建模,进行危险性预测... 首先介绍了模糊Modular神经网络的原理、建模方法与仿真实验,然后利用该方法把一些常用的地震学指标作为神经网络的输入,未来50年最大震级则作为网络的期望输出,对官厅水库及邻区的地震活动进行学习与最大震级序列建模,进行危险性预测。通过分析,认为该方法在一定程度上具有学习、建模与外推预测泛化能力,具有很好的中长期地震危险性预测效果,可以作为中长期地震危险性分析的工具。 展开更多
关键词 官厅水库及邻区 模糊modular神经网络 地震危险性预测
在线阅读 下载PDF
改进的模糊Modular神经网络在既有建筑可靠性鉴定中的应用 被引量:3
10
作者 张克纯 陆洲导 项凯 《结构工程师》 2007年第6期37-42,共6页
在Takagi-Sugeno模糊逻辑系统的基础上,提出了改进的模糊Modular神经网络模型(IF-MNN),并将该模型应用于既有建筑的可靠性鉴定。改进的模型是将传统的模糊Modular神经网络模型中的单输出改进为多输出。这种改进的多输入多输出的模糊Modu... 在Takagi-Sugeno模糊逻辑系统的基础上,提出了改进的模糊Modular神经网络模型(IF-MNN),并将该模型应用于既有建筑的可靠性鉴定。改进的模型是将传统的模糊Modular神经网络模型中的单输出改进为多输出。这种改进的多输入多输出的模糊Modular神经网络模型具有预测性能好、训练学习速度快的优点,它的系统门网络采用模糊C均值聚类算法代替K-means算法,专家网络的训练中引进了先进的Levenberg-Marquardt算法。在应用改进的模糊Modular神经网络模型对既有建筑进行可靠性鉴定的过程中,综合考虑了各主要因素对既有建筑可靠性鉴定等级的影响,并将经量化处理的影响因素作为网络的外部输入,将网络计算得到的4个输出值分别作为样本对应于不同可靠性等级的隶属度,建筑可靠性鉴定的最终评判等级为最大隶属度所对应的等级。训练和预测样本的计算结果证明了改进的模糊Modular神经网络模型在既有建筑可靠性鉴定中应用的可行性和有效性。 展开更多
关键词 modular神经网络 可靠性鉴定 既有建筑 模糊C均值 LEVENBERG-MARQUARDT 算法
在线阅读 下载PDF
一种模糊Modular神经网络模型及其应用 被引量:1
11
作者 于百胜 黄文虎 《强度与环境》 2002年第3期43-46,63,共5页
将神经网络模糊系统与模糊C均值聚类法相结合 ,对模糊Modular神经网络进行研究 ,提出了该模糊神经网络模型的多输出结构及其学习算法 ,据此开发了模糊神经网络诊断系统 ,并将其用于某电源分系统的诊断分析 ,运行的结果表明 。
关键词 神经网络模型 模糊神经网络 模糊C平均法 modular网络
在线阅读 下载PDF
模糊化的Modular模糊神经网络降水预报模型研究
12
作者 黄颖 金龙 主毅 《计算机工程与设计》 CSCD 北大核心 2008年第18期4797-4800,共4页
以广西西南部前汛期5、6月25个气象站平均逐日降水量作为预报对象,采用自然正交分解方法和模糊化方法对输入因子预处理后,结合Modular模糊神经网络建立了一种新的降水预报模型,并进行了逐日业务预报应用试验。结果表明,该降水预报模型... 以广西西南部前汛期5、6月25个气象站平均逐日降水量作为预报对象,采用自然正交分解方法和模糊化方法对输入因子预处理后,结合Modular模糊神经网络建立了一种新的降水预报模型,并进行了逐日业务预报应用试验。结果表明,该降水预报模型比常规Modular模糊神经网络方法及逐步回归方法有更高的预报精度,具有较好的业务应用前景。 展开更多
关键词 模糊化 模块化模糊神经网络 自然正交展开 逐日降水量 预报建模
在线阅读 下载PDF
模糊Modular神经网络在黄金矿区可持续发展能力评价模型中的应用
13
作者 吴刚 刘胜富 《黄金》 CAS 2003年第9期16-20,共5页
以黄金矿区可持续发展能力的评价为研究对象 ,以矿区REES系统经济、社会、环境、资源子系统的综合发展水平、可持续发展度以及相互之间的状态协调度作为评价指标 ,建立了模糊Modular神经网络评价模型。通过实例分析 ,证明该模型具有较... 以黄金矿区可持续发展能力的评价为研究对象 ,以矿区REES系统经济、社会、环境、资源子系统的综合发展水平、可持续发展度以及相互之间的状态协调度作为评价指标 ,建立了模糊Modular神经网络评价模型。通过实例分析 ,证明该模型具有较好的泛化、学习和映射能力 ,对类似于可持续发展能力的非线性系统评价有一定的参考价值。 展开更多
关键词 可持续发展能力 评价指标体系 模糊modular神经网络
在线阅读 下载PDF
Modular-tree:一个自构筑的神经网络结构(英文)
14
作者 陈珂 余祥 +1 位作者 迟惠生 杨立平 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 1996年第1期110-119,共10页
提出了一种新颖的具有自构筑能力的神经网络结构,称之为Modular-tree和两个相应的自构筑算法。在此结构中,任何现存的前馈神经网络均可以作为子网。对于一个给定的学习任务,利用提出的生成算法通过对输入空间递归地划分,自动生成一树状... 提出了一种新颖的具有自构筑能力的神经网络结构,称之为Modular-tree和两个相应的自构筑算法。在此结构中,任何现存的前馈神经网络均可以作为子网。对于一个给定的学习任务,利用提出的生成算法通过对输入空间递归地划分,自动生成一树状的模块神经网络,从而避免了网络结构预置问题。由于使用了“分治”原理,Modular-tree具有良好的性能及快速训练的能力。此结构已用于多个监督学习问题(包括:标准测试及现实世界问题)并取得令人满意的实验结果。 展开更多
关键词 模块神经网络 自构筑 监督学习
在线阅读 下载PDF
基于深度学习的舰船姿态预估的可视化研究
15
作者 陈占阳 王振宇 +1 位作者 崔海鑫 黎胜 《华中科技大学学报(自然科学版)》 北大核心 2025年第4期132-137,共6页
针对当舰船在实际海况中航行时,运动姿态剧烈变化会大大降低舰载机起降安全性的问题,在模块化神经网络(MNN)中引入长短期记忆神经网络(LSTM)和K均值(K-Means)聚类算法,形成复合的MNN-KMEANS-LSTM预报模型.先基于Fortran软件生成的仿真... 针对当舰船在实际海况中航行时,运动姿态剧烈变化会大大降低舰载机起降安全性的问题,在模块化神经网络(MNN)中引入长短期记忆神经网络(LSTM)和K均值(K-Means)聚类算法,形成复合的MNN-KMEANS-LSTM预报模型.先基于Fortran软件生成的仿真模拟数值进行模型训练及最佳参数保存,后基于舰船船模试验运动数据进行参数调用和姿态预测,其预报损失值最低可达1×10^(-5)数量级,拟合系数最高可达0.98.同时,将MNNKMEANS-LSTM模型与径向基函数、门控循环单元神经网络进行比较,分析强非线性非平稳海况下不同模型的预报性能.最后,借助Python语言的第三方库(PyQt),开发了舰船运动姿态显示平台,并承接上述理论研究成果,基于软件界面的三大功能,以模型的自适应性满足在线计算要求,实现了人机交互,为舰船工作人员配合舰载机起降提供预判参考. 展开更多
关键词 舰船运动 长短期记忆神经网络 模块化神经网络 PyQt第三方库 在线计算
原文传递
基于通道注意力机制的MIMO神经网络均衡算法
16
作者 户俊杰 延凤平 +2 位作者 郭浩 王鹏飞 骆长亮 《光通信技术》 北大核心 2025年第3期22-26,共5页
针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性... 针对模分复用光传输系统中的模式串扰问题,提出了一种基于通道注意力机制的多输入多输出(MIMO)神经网络均衡算法(MIMO-NNE-CAM)算法。该算法通过引入通道注意力机制,使神经网络专注于更重要的信道特征,实现信号的有效均衡。为验证算法性能,利用VPI Transmission仿真平台搭建了三模模分复用系统进行测试。实验结果表明:在满足误码率为1×10^(-3)的条件下,MIMO-NNE-CAM算法相较原始MIMO-NNE算法和最小均方(LMS)算法分别具有1.3dB和3.1dB的性能增益,且在强耦合情况下也能保持稳定的误码性能,展现出更快的收敛速度和更强的抗耦合能力。 展开更多
关键词 信道均衡 模分复用 神经网络 模间串扰 通道注意力机制
在线阅读 下载PDF
人工智能技术背景下Web前端开发技术研究 被引量:3
17
作者 孙莉莉 《无线互联科技》 2025年第7期77-80,共4页
在人工智能技术背景下,Web前端开发正经历着变革,这不仅显著提高了开发效率,还极大地优化了用户体验。然而,现行技术在Web前端开发中的应用效果并不好,所开发的Web前端不仅响应性能比较差,而且代码错误率较高,严重影响了用户体验。为此... 在人工智能技术背景下,Web前端开发正经历着变革,这不仅显著提高了开发效率,还极大地优化了用户体验。然而,现行技术在Web前端开发中的应用效果并不好,所开发的Web前端不仅响应性能比较差,而且代码错误率较高,严重影响了用户体验。为此,文章提出了人工智能技术背景下Web前端开发技术的研究。该技术以模型视图控制器分层架构与模块化设计为基础,通过数据层、视图层以及逻辑层搭建Web前端框架。根据Web前端框架的运行需求,文章采用人工智能技术中的人工神经网络模型生成与Web前端框架相匹配的代码,从而实现基于人工智能技术的Web前端开发。实验结果表明,采用所设计技术开发的Web前端响应时间不超过1 s,代码错误率不超过1%,可以实现Web前端的流畅运行。 展开更多
关键词 人工智能技术 Web前端 MVC 前端框架 模块化 人工神经网络模型
在线阅读 下载PDF
柔性直流配电网中接地故障检测技术研究 被引量:1
18
作者 郑峰 吕佳雯 +1 位作者 林燕贞 梁宁 《电机与控制学报》 北大核心 2025年第4期54-64,共11页
针对柔性直流配电系统拓扑结构复杂,故障种类多、故障识别难度大等问题,提出一种基于相对熵(K-L)散度优化变分模态分解(VMD)与结合Inception的卷积神经网络(CNN)的故障检测方法,该方法首先对故障点的正极暂态电压时域波形采用K-L VMD方... 针对柔性直流配电系统拓扑结构复杂,故障种类多、故障识别难度大等问题,提出一种基于相对熵(K-L)散度优化变分模态分解(VMD)与结合Inception的卷积神经网络(CNN)的故障检测方法,该方法首先对故障点的正极暂态电压时域波形采用K-L VMD方法提取特征分量,利用特征模态分量构造识别判据,接着对采样数据进行CNN训练,获取模型最优参数,最后利用仿真平台搭建了一个基于模块化多电平变换器(MMC)的10 kV两端直流配电网结构来验证所提方法的有效性,仿真实验表明利用K-L散度优化变分模态分解对仿真数据进行处理,具有良好的推广能力,且具备对噪声的抗干扰能力,所提出的故障检测方法有效,对于各种故障类型的识别具有较强的灵敏性,能准确识别故障类型。 展开更多
关键词 柔性直流配电网 K-L散度优化 变分模态分解 卷积神经网络 故障检测 模块化多电平变换器
在线阅读 下载PDF
一种基于图社区检测的二进制模块化方法
19
作者 刘新鹏 傅强 +2 位作者 张红宝 陈晓光 杨满智 《信息安全研究》 北大核心 2025年第1期43-49,共7页
随着信息技术的不断发展,软件规模不断增加.复杂的大型软件是通过组合实现独立功能模块的组件构建的.然而,一旦源代码被编译成二进制文件这些模块化信息就会丢失,二进制模块化任务的目标就是重建这些模块化信息.二进制模块化任务有许多... 随着信息技术的不断发展,软件规模不断增加.复杂的大型软件是通过组合实现独立功能模块的组件构建的.然而,一旦源代码被编译成二进制文件这些模块化信息就会丢失,二进制模块化任务的目标就是重建这些模块化信息.二进制模块化任务有许多下游应用场景,比如二进制代码复用现象检测、二进制相似度检测、二进制软件成分分析等.提出一种新的图社区检测算法,并基于该算法设计了一种二进制模块化方法.通过对7839个Linux系统的二进制文件进行模块化验证该方法的有效性,实验显示该方法的Normalized Turbo MQ指标为0.557,比现有的最先进方法提升58.6%,并且该方法的运行时间开销远低于已有方法.同时,还提出了一种库粒度的二进制模块化方法,已有的二进制模块化方法只能将二进制文件分解为若干个模块,库粒度的二进制模块化方法可以将二进制文件分解为若干个库,同时展示了这种方法在挖矿恶意软件家族分类中的应用. 展开更多
关键词 软件安全 二进制分析 软件模块化 图神经网络 社区检测
在线阅读 下载PDF
模块化自重构卫星智能变构规划
20
作者 贾晓冷 叶东 +1 位作者 王博 孙兆伟 《哈尔滨工业大学学报》 北大核心 2025年第4期1-9,共9页
为解决航天任务复杂化与传统定构型卫星设计之间的矛盾,航天机构着眼于研究具有灵活构型变化能力的模块化自重构卫星,其中变构规划是一个具有挑战性的研究领域。针对模块化卫星变构问题,以立方体晶格型卫星作为研究对象,基于图论提出了... 为解决航天任务复杂化与传统定构型卫星设计之间的矛盾,航天机构着眼于研究具有灵活构型变化能力的模块化自重构卫星,其中变构规划是一个具有挑战性的研究领域。针对模块化卫星变构问题,以立方体晶格型卫星作为研究对象,基于图论提出了描述卫星拓扑结构的构型矩阵和拓展矩阵。通过对卫星模块运动特点的研究,给出了求解模块运动可达空间的算法。将卫星的变构问题视为序列决策问题,基于深度强化学习理论,将变构过程建模为马尔可夫决策过程,设计了基于演员-评论家(actor-critic)模型的智能变构规划方法,建立多层神经网络以近似演员与评论家函数,通过训练神经网络,逐步改进卫星变构策略性能。仿真实验结果表明,所提出的变构方法对于给定的卫星算例,可以得到逐步改进的卫星变构策略,针对不同模块数的卫星构型具有通用性,同时相比于传统基于启发式搜索的变构方法,在变构步数、计算时间和变构成功率上具有优势,验证了所提出的智能规划方法在未来模块化卫星设计工作中具有潜在的价值。 展开更多
关键词 模块化自重构卫星 变构规划 深度强化学习 神经网络 演员-评论家模型
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部