This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range o...This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.展开更多
This paper presents an environmental-friendly robotic system mimicking the undulating fins of a fish.To mimic the actual flexible fin of real fish,a fin-like mechanism with a series of connecting linkages is modeled a...This paper presents an environmental-friendly robotic system mimicking the undulating fins of a fish.To mimic the actual flexible fin of real fish,a fin-like mechanism with a series of connecting linkages is modeled and attached to the robotic fish,by virtue of a specially designed strip.Each link is able to turn and slide with respect to the adjacent link.These driving linkages are then used to form a mechanical fin consisting of several fin segments,which are able to produce undulations,similar to those produced by the actual fish fins.Owing to the modular and re-configurable design of the mechanical fin,we are able to construct biomimetic robotic fish with various swimming modes by fin undulations.Some qualitative and workspace observations by experiments of the robotic fish are shown and discussed.展开更多
Modular Unmanned Aerial Vehicles(UAVs)can adapt to rapidly changing payload requirements based on the shape and weight of the load by adding or subtracting units,reconfiguring,or changing the type of units.The existin...Modular Unmanned Aerial Vehicles(UAVs)can adapt to rapidly changing payload requirements based on the shape and weight of the load by adding or subtracting units,reconfiguring,or changing the type of units.The existing research has addressed aerial docking and hover control post-docking but fails to achieve coordinated flight following combination,leading to delayed response and oscillations as the number of UAV units increases.Moreover,the configuration of modular UAVs is complex and variable,making it challenging to adjust the controller parameters of each unit online.Therefore,this paper presents:(A)Adaptive attitude allocation method for different combined UAV configurations:establishing a mapping relationship between constant controller parameters of the unit and the combination angular acceleration.The desired torque of the combination is allocated based on the size of the lever arm,enabling adaptive attitude control of the combination for varying configurations by controlling the attitude of the local unit;(B)A power allocation strategy based on a leader-wingman mode:employing a leader to control the entire combination,distributing the combination’s force and torque to wingman units according to the mapping relationship of the attitude allocation method.This transforms the complex control of the combination into unit control in the leader-wingman mode.Compared to current average allocation methods,the step response of attitude angle improves by about 60% on average,and spatial trajectory tracking increases by an average of 11.5%.As the number of units grows,the response of the combination becomes similar to that of a single,independently flying UAV,resolving the oscillation issue in combined flight.Additionally,this approach eliminates the need to change the controller parameters of all units,facilitating convenient reconfiguration and coordinated flight for modular UAVs post-combination.展开更多
Antarctic scientific expedition has important strategic significance. It is an inevitable trend to apply robots to assist researchers during the Antarctic expedition. However, the robot manipula- tors at present have ...Antarctic scientific expedition has important strategic significance. It is an inevitable trend to apply robots to assist researchers during the Antarctic expedition. However, the robot manipula- tors at present have a series of problems and unable to meet the requirements of the Antarctic expe- dition. In this paper, a novel Antarctic modular robot manipulator is proposed, which has a compact structure with modular joints. The robot manipulator has high reliability, and quick assembling-and- disassembling ability. Through well wires arranging and thermal controlling, the manipulator can better adapt to the Antarctic environment. In addition, the work space of the manipulator is serious- ly analyzed, and a new hybrid position/force control method is adopted to make the manipulator per- form better. Simulation results validate the control method and show that the robot manipulator has a good performance to meet the requirements of Antarctic expedition.展开更多
The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is co...The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is coordinated to the used modules per phase when active power is transmitted prior to reactive power, so that the energy is fed back to the AC power grid connected to the converter station which uses the fixed dc voltage controller. In addition, in view of the different forms connected to the grid, specifically when the converter station supplies power for passive network, the passive converter station can take a certain auxiliary trigger strategy to make its maximum energy feedback to the grid. Finally, a simulation system of the MMC-HVDC system is constructed in Matlab/Simulink environment, and simulation results show that the proposed stop strategies are effective.展开更多
This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for tradition...This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for traditional industrial manipulator systems cannot be directly used to the space ones due to the special space environment and compactness. Considering the extremely tight constraints on mass, power consumption, volume, cost and "design-to-orbit" schedules, the fault-tolerant control system is developed mainly based on commercial-off-the-shaft components. The features of the hardware and software of the fault-tolerant control system are presented. The performance specifications are also discussed. Because many space proven design technologies and experiences are adopted, the fault-tolerant control system is characterized by high reliability and practicability.展开更多
随着无人机在各行各业的广泛应用,其已成为推动经济增长和产业升级的新引擎。日益丰富的业务场景对无人机控制总线提出了更高要求,采用控制器局域网(Controller Area Network,CAN)总线可有效降低控制系统的总线复杂度与重量,提升通信速...随着无人机在各行各业的广泛应用,其已成为推动经济增长和产业升级的新引擎。日益丰富的业务场景对无人机控制总线提出了更高要求,采用控制器局域网(Controller Area Network,CAN)总线可有效降低控制系统的总线复杂度与重量,提升通信速率。通过模块化设计,系统可实现快速维修、更换及扩展,从而显著提高无人机使用效能。展开更多
双碳战略下,新能源电源渗透率的不断提升导致电力系统转动惯量降低,具备同步机的惯量和电压支撑能力成为并网变流器的重要运行需求。为此,首先提出了一种基于跟网型框架的功率控制型静止同步机控制策略。该策略通过参考功率点跟踪环和...双碳战略下,新能源电源渗透率的不断提升导致电力系统转动惯量降低,具备同步机的惯量和电压支撑能力成为并网变流器的重要运行需求。为此,首先提出了一种基于跟网型框架的功率控制型静止同步机控制策略。该策略通过参考功率点跟踪环和电压电流双闭环实现对同步机电压频率支撑特性的模拟。然后,建立了功率控制型静止同步机并网系统的状态空间模型,分析了控制参数对系统稳定性的影响,比较了所提控制与经典跟网型、构网型以及基于测量频率微分值(rate of change of frequency,RoCoF)的惯量控制的运行特性及适用场景。最后,基于PSCAD/EMTDC搭建的电磁暂态仿真模型验证了所提静止同步机控制策略的有效性。展开更多
基金Supported by the High Technology Research and Development Programme of China (No.2002AA421160) and the National Natural Science Foundation of China (No.50375008).
文摘This paper focuses on the development of an embedded integrated servo-controller (EISC) for servomotors. Comprising of mainly servo-controller and servo-amplifiers, this EISC is capable of controlling a wide range of servomotors to perform complieated tasks. Hence, integration of this EISC with a servomotor forms an intelligent modular actuator (IMA) that is essential to modern manufacturing industries. The development of such an EISC involves two major tasks: first, designing the hardware of a compact-sized and highly compatible EISC, and second, developing the software functions to facilitate its functionalities and capahilities. The developed EISC hence forms an integrated-servo-eontrol module, which determines the capability, functionality, flexibility and responsiveness of these IMAs.
文摘This paper presents an environmental-friendly robotic system mimicking the undulating fins of a fish.To mimic the actual flexible fin of real fish,a fin-like mechanism with a series of connecting linkages is modeled and attached to the robotic fish,by virtue of a specially designed strip.Each link is able to turn and slide with respect to the adjacent link.These driving linkages are then used to form a mechanical fin consisting of several fin segments,which are able to produce undulations,similar to those produced by the actual fish fins.Owing to the modular and re-configurable design of the mechanical fin,we are able to construct biomimetic robotic fish with various swimming modes by fin undulations.Some qualitative and workspace observations by experiments of the robotic fish are shown and discussed.
基金supported by the Funding of National Key Laboratory of Rotorcraft Aeromechanics,China(No.61422202108)the National Natural Science Foundation of China(No.52176009)the Postgraduate Research&Practice Innovation Program of NUAA,China(No.xcxjh20220214).
文摘Modular Unmanned Aerial Vehicles(UAVs)can adapt to rapidly changing payload requirements based on the shape and weight of the load by adding or subtracting units,reconfiguring,or changing the type of units.The existing research has addressed aerial docking and hover control post-docking but fails to achieve coordinated flight following combination,leading to delayed response and oscillations as the number of UAV units increases.Moreover,the configuration of modular UAVs is complex and variable,making it challenging to adjust the controller parameters of each unit online.Therefore,this paper presents:(A)Adaptive attitude allocation method for different combined UAV configurations:establishing a mapping relationship between constant controller parameters of the unit and the combination angular acceleration.The desired torque of the combination is allocated based on the size of the lever arm,enabling adaptive attitude control of the combination for varying configurations by controlling the attitude of the local unit;(B)A power allocation strategy based on a leader-wingman mode:employing a leader to control the entire combination,distributing the combination’s force and torque to wingman units according to the mapping relationship of the attitude allocation method.This transforms the complex control of the combination into unit control in the leader-wingman mode.Compared to current average allocation methods,the step response of attitude angle improves by about 60% on average,and spatial trajectory tracking increases by an average of 11.5%.As the number of units grows,the response of the combination becomes similar to that of a single,independently flying UAV,resolving the oscillation issue in combined flight.Additionally,this approach eliminates the need to change the controller parameters of all units,facilitating convenient reconfiguration and coordinated flight for modular UAVs post-combination.
基金Supported by Beijing Science Foundation(4122065)National High Technology Research and Development Program of China("863" Program)(2011AA040202)National Science Foundation for Distinguished Young Scholar(60925014)
文摘Antarctic scientific expedition has important strategic significance. It is an inevitable trend to apply robots to assist researchers during the Antarctic expedition. However, the robot manipula- tors at present have a series of problems and unable to meet the requirements of the Antarctic expe- dition. In this paper, a novel Antarctic modular robot manipulator is proposed, which has a compact structure with modular joints. The robot manipulator has high reliability, and quick assembling-and- disassembling ability. Through well wires arranging and thermal controlling, the manipulator can better adapt to the Antarctic environment. In addition, the work space of the manipulator is serious- ly analyzed, and a new hybrid position/force control method is adopted to make the manipulator per- form better. Simulation results validate the control method and show that the robot manipulator has a good performance to meet the requirements of Antarctic expedition.
文摘The stop control strategy of modular multilevel converter based HVDC transmission system is proposed. This stop process is divided into stages of energy feedback and energy consumption. The DC voltage controller is coordinated to the used modules per phase when active power is transmitted prior to reactive power, so that the energy is fed back to the AC power grid connected to the converter station which uses the fixed dc voltage controller. In addition, in view of the different forms connected to the grid, specifically when the converter station supplies power for passive network, the passive converter station can take a certain auxiliary trigger strategy to make its maximum energy feedback to the grid. Finally, a simulation system of the MMC-HVDC system is constructed in Matlab/Simulink environment, and simulation results show that the proposed stop strategies are effective.
基金"863" National High Technology Foundation in Astronautics(2005AA742030)
文摘This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for traditional industrial manipulator systems cannot be directly used to the space ones due to the special space environment and compactness. Considering the extremely tight constraints on mass, power consumption, volume, cost and "design-to-orbit" schedules, the fault-tolerant control system is developed mainly based on commercial-off-the-shaft components. The features of the hardware and software of the fault-tolerant control system are presented. The performance specifications are also discussed. Because many space proven design technologies and experiences are adopted, the fault-tolerant control system is characterized by high reliability and practicability.
文摘随着无人机在各行各业的广泛应用,其已成为推动经济增长和产业升级的新引擎。日益丰富的业务场景对无人机控制总线提出了更高要求,采用控制器局域网(Controller Area Network,CAN)总线可有效降低控制系统的总线复杂度与重量,提升通信速率。通过模块化设计,系统可实现快速维修、更换及扩展,从而显著提高无人机使用效能。
文摘双碳战略下,新能源电源渗透率的不断提升导致电力系统转动惯量降低,具备同步机的惯量和电压支撑能力成为并网变流器的重要运行需求。为此,首先提出了一种基于跟网型框架的功率控制型静止同步机控制策略。该策略通过参考功率点跟踪环和电压电流双闭环实现对同步机电压频率支撑特性的模拟。然后,建立了功率控制型静止同步机并网系统的状态空间模型,分析了控制参数对系统稳定性的影响,比较了所提控制与经典跟网型、构网型以及基于测量频率微分值(rate of change of frequency,RoCoF)的惯量控制的运行特性及适用场景。最后,基于PSCAD/EMTDC搭建的电磁暂态仿真模型验证了所提静止同步机控制策略的有效性。