期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Classifcation of Gapped Domain Walls in 2+1D Topological Orders through 2-Morita Equivalence
1
作者 Rongge Xu Holiverse Yang 《Chinese Physics Letters》 2025年第7期320-367,共48页
We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(... We classify condensable𝐸E_(2)-algebras in a modular tensor category C up to 2-Morita equivalence.Physically,this classification provides an explicit criterion to determine when distinct condensable𝐸E_(2)-algebras yield the same condensed topological phase under a two-dimensional anyon condensation process.The relations between different condensable algebras can be translated into their module categories,interpreted physically as gapped domain walls in topological orders.As concrete examples,we interpret the categories of quantum doubles of finite groups and examples beyond group symmetries.Our framework fully elucidates the interplay among condensable𝐸E_(1)-algebras in C,condensable𝐸E_(2)-algebras in C up to 2-Morita equivalence,and Lagrangian algebras in C⊠C. 展开更多
关键词 morita equivalence modular tensor category topological orders condensed topological phase condensable algebras condensable e algebras gapped domain walls
原文传递
Classification of Spherical Fusion Categories of Frobenius–Schur Exponent 2
2
作者 Zheyan Wan Yilong Wang 《Algebra Colloquium》 SCIE CSCD 2021年第1期39-50,共12页
In this paper,we propose a new approach towards the classification of spherical fusion categories by their Frobenius–Schur exponents.We classify spherical fusion categories of Frobenius–Schur exponent 2 up to monoid... In this paper,we propose a new approach towards the classification of spherical fusion categories by their Frobenius–Schur exponents.We classify spherical fusion categories of Frobenius–Schur exponent 2 up to monoidal equivalence.We also classify modular categories of Frobenius–Schur exponent 2 up to braided monoidal equivalence.It turns out that the Gauss sum is a complete invariant for modular categories of Frobenius–Schur exponent 2.This result can be viewed as a categorical analog of Arf's theorem on the classification of non-degenerate quadratic forms over fields of characteristic 2. 展开更多
关键词 spherical fusion category modular category Frobenius-Schur exponent Arf invariant Gauss sum
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部