Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance th...Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance the properties of SS through high-speed dispersion,transforming its inherent hydrophilic and oleophobic characteristics into hydrophily and lipophilicity.The modification effects were innovatively assessed by observing the color changes of modified steel slag solutions following the dissolution-settlement equilibrium constant.This approach avoided human-induced errors and improved estimated accuracy in conformance with conventional methods such as oil absorption value,activation index,sedimentation volume,and lipophilicity.The hydrolysis of 3-aminopropyltriethoxysilane(KH)generated–Si(OH)_(3)structure to form hydrogen or covalent bonds with active substances(OH groups)from SS.Concurrently,SS underwent encapsulation via Si–O–Si structure resulting from the dehydration of–Si(OH)_(3).The stearic acid coupling agent(SA),aluminate coupling agent(AC),and titanate coupling agent(TN)underwent chemical reactions with Ca(OH)_(2),Al(OH)_(3),and CaCO_(3)in SS.The acidic SA primarily created stable chemical bonds and acted as a supplement due to its package,reducing surface activity and hydrophilicity while enhancing lipophilicity.Specifically,the optimal modification effect was obtained at 3 wt.%SA.Consequently,3 wt.%SA was established as the benchmark for multiple modifiers and the most effective combination was 3 wt.%SA and 3 wt.%AC.Compared with a single interface modifier,SA corroded the SS surface to provide numerous active sites for further modification by KH,AC,or TN,resulting in a more densely packed structure.In addition,more organic groups on SS prevent the proximity of other particles from agglomerating to achieve dispersion and a synergistic modification,laying a theoretical foundation of SS in a new pathway for organic composite materials.展开更多
Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Here...Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.展开更多
The excessive demand for phosphorus-based fertilizers is contributing to the undesired byproduct of phosphogypsum(PG),typically found in large quantities in phosphoric acid industry.Without proper management,this indu...The excessive demand for phosphorus-based fertilizers is contributing to the undesired byproduct of phosphogypsum(PG),typically found in large quantities in phosphoric acid industry.Without proper management,this industrial waste poses a significant environmental pollution risk.Current technologies are struggle to effectively handle the volume of PG produced,but one promising solution is its conversion into hemihydrate gypsum(CaSO_(4)·0.5 H_(2)O,HH).HH can exist in two phases,α-HH andβ-HH,withα-hemihydrate gypsum(α-HH)being preferred for its complete crystal structure and lower water requirement for hydration.The morphology ofα-HH gypsum is crucial for its material applications,and controlling crystal morphology is possible through the use of suitable crystal modifiers.This review explores various aspects of crystal modifiers and highlights their role in the preparation ofα-HH from PG.It suggests that leveraging the interfacial properties of PG could lead to innovative applications.Additionally,the review outlines future directions for PG development and identifies challenges to be addressed in the next steps.展开更多
Advanced photovoltaics,such as ultra-flexible perovskite solar cells(UF-PSCs),which are known for their lightweight design and high power-to-mass ratio,have been a long-standing goal that we,as humans,have continuousl...Advanced photovoltaics,such as ultra-flexible perovskite solar cells(UF-PSCs),which are known for their lightweight design and high power-to-mass ratio,have been a long-standing goal that we,as humans,have continuously pursued.Unlike normal PSCs fabricated on rigid substrates,producing high-efficiency UF-PSCs remains a challenge due to the difficulty in achieving full coverage and minimizing defects of metal halide perovskite(MHP)films.In this study,we utilized Al_(2)O_(3) nanoparticles(NPs)as an inorganic surface modifier to enhance the wettability and reduce the roughness of poly-bis(4-phenyl)(2,4,6-trimethylphenyl)amine simultaneously.This approach proves essentials in fabricating UF-PSCs,enabling the deposition of uniform and dense MHP films with full coverage and fewer defects.We systematically investigated the effect of Al_(2)O_(3) NPs on film formation,combining simulation with experiments.Our strategy not only significantly increases the power conversion efficiency(PCE)from 11.96%to 16.33%,but also promotes reproducibility by effectively addressing the short circuit issue commonly encountered in UF-PSCs.Additionally,our UF-PSCs demonstrates good mechanical stability,maintaining 98.6%and 79.0%of their initial PCEs after 10,000 bending cycles with radii of 1.0 and 0.5 mm,respectively.展开更多
The effect of combining different organic friction modifiers(OFMs)with ashless dispersants on the dispersion performance of lubricant oils in sludge was investigated using molecular dynamics(MD)simulations.polyisobuty...The effect of combining different organic friction modifiers(OFMs)with ashless dispersants on the dispersion performance of lubricant oils in sludge was investigated using molecular dynamics(MD)simulations.polyisobutylsuccinimide(PIBSI)was mixed with either glycerol monooleate(GMO)or oleamide(OAM)in a poly-α-olefin(PAO)base oil.The distribution and interaction energy of sludge precursors were analyzed both with and without these additive mixtures.The results show that both the OFMs and dispersants can form hydrogen bonds with sludge precursor molecules,preventing further aggregation.Adding OFMs to lubricant oil-containing dispersants enhances the dispersion of the lubricant.Compared to OAM,GMO forms more hydrogen bonds with sludge precursors,which favors improved dispersion.However,there is strong competition and interaction between GMO and PIBSI,which reduces the dispersant’s effectiveness in mitigating sludge precursor aggregation.The interactions among additives and their impact on performance should be considered when designing high-performance lubricant formulations.展开更多
Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The ...Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai展开更多
With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c...With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.展开更多
To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically ...To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.展开更多
Semenov-Tian-Shansky has given the solution of the modified classical Yang-Baxter equation, which was called the modified r-matrix. Relevant studies have been extensive in recent times. In this paper, we introduce the...Semenov-Tian-Shansky has given the solution of the modified classical Yang-Baxter equation, which was called the modified r-matrix. Relevant studies have been extensive in recent times. In this paper, we introduce the concept and representations of modified RotaBaxter Hom-Lie algebras. We develop a cohomology of modified Rota-Baxter Hom-Lie algebras with coefficients in a suitable representation. As applications, we study formal deformations and abelian extensions of modified Rota-Baxter Hom-Lie algebras in terms of second cohomology groups.展开更多
In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadin...In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).展开更多
Objectives Primary prevention targeting modifiable risk factors would reduce the global burden of colorectal cancer,but the quantitative results are uncertain.We aimed to assess the global burden of colorectal cancer ...Objectives Primary prevention targeting modifiable risk factors would reduce the global burden of colorectal cancer,but the quantitative results are uncertain.We aimed to assess the global burden of colorectal cancer attributed to modifiable lifestyle factors and quantify the potential increase in life expectancy resulting from the elimination of these risk factors.Methods Based on the Global Burden of Disease Study 2021,we examined colorectal cancer deaths and disability-adjusted life years attributed to modifiable risk factors(including smoking,diet low in whole grains,diet low in milk,diet high in red meat,diet low in calcium,diet high in processed meat,and diet low in fiber)at the global,regional,and national levels from 1990 to 2021.The abridged period life table method was utilized to quantify the potential gain in life expectancy from eliminating these risk factors.Results Globally in 2021,57.1%of colorectal cancer deaths and 56.4%of disability-adjusted life years were preventable,with rates of 7.55(4.94–9.64)and 174.67(114.54–222.24)per 100,000 population,respectively.The modifiable burden has diminished in the high,high-middle,and low socio-demographic index quintiles and remained steady in the middle one.However,there is a concerning increase in the low-middle one.In 2021,the elimination of global colorectal cancer attributed to modifiable factors would increase the life expectancy for males and females by 0.107 and 0.109 years,respectively.Conclusion Our results quantitatively demonstrate the substantial burden reduction in colorectal cancer and the significant gain in life expectancy that can be achieved by eliminating modifiable lifestyle factors.展开更多
As a crucial human activity,dam construction can profoundly impact the surface hydrology patterns.The Three Gorges Reservoir(TGR),as one of the largest hydraulic engineering projects in the world,has gained continuous...As a crucial human activity,dam construction can profoundly impact the surface hydrology patterns.The Three Gorges Reservoir(TGR),as one of the largest hydraulic engineering projects in the world,has gained continuous attention for its eco-hydrological effects.However,further investigation is necessary to understand the runoff and social impacts of the TGR on the Upper Yangtze River.This study first employed a modified SWAT model to simulate runoff,compared scenarios with and without the TGR,and finally evaluated water supply and demand in the Upper Yangtze River.The results showed a significant increasing trend in the surface water area of the Upper Yangtze River from 2000-2020.The modified SWAT model performs well in simulating the runoff,with Nash-Sutcliffe Efficiency and Percent Bias improved by 0.04-0.30 and 2-31.90,respectively.Scenario simulation results revealed that the TGR reduced seasonal differences in runoff.During the flood season,the runoff volume at the Yichang Station in the scenario with the TGR is lower than in the scenario without the TGR,peaking at 4500 m3/s.Conversely,in the dry season,the runoff volume of the scenario with TGR is higher,with a maximum increase of 1500 m3/s.The region exhibiting the greatest runoff variations is the Yangtze River's main stem in the Three Gorges Reservoir region.Besides,the TGR notably alleviated the water supply-demand imbalance in Chongqing during the winter and spring seasons,with a maximum increase of 0.16 in the supplydemand index.This study can contribute significantly to understanding the natural and social impacts of the TGR from the perspective of hydrological and scenario simulation.展开更多
Spinal cord injury and treatment opportunities:The adult mammalian spinal cord has a very limited capacity for spontaneous regeneration due to various intrinsic molecular and cellular factors.Although the spinal cord ...Spinal cord injury and treatment opportunities:The adult mammalian spinal cord has a very limited capacity for spontaneous regeneration due to various intrinsic molecular and cellular factors.Although the spinal cord neurons have the capacity to regenerate their axons,the expression of growth inhibitory factors,lack or suppression of proper guidance cues,and profound inflammatory responses do not permit successful regeneration(Khyeam et al.,2021).展开更多
Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
Use of immunomodulating agents to prevent the progression of autoimmuneβ-cell damage leading to type 1 diabetes mellitus(T1DM)is an interesting area for research.These include non-specific anti-inflammatory agents,im...Use of immunomodulating agents to prevent the progression of autoimmuneβ-cell damage leading to type 1 diabetes mellitus(T1DM)is an interesting area for research.These include non-specific anti-inflammatory agents,immunologic vaccination and anti-inflammatory agents targeting specific immune cells or cytokines.Teplizumab is an anti-CD3-molecule that binds to and leads to the disappearance of the CD3/TCR complex and rendering the T cell anergic to its target antigen.Preclinical and clinical trials have demonstrated its efficacy in reducing the decline in serum C-peptide levels and the need for insulin therapy if used early in the disease process of T1DM.The benefits have been apparent as early as six months to as long as seven years after therapy.It has recently been approved by the Food and Drug Administration to delay the onset of clinical(stage 3)type 1 diabetes in children above 8 years of age.In their recent metaanalysis published in the World Journal of Diabetes,Ma et al found that those in the teplizumab treatment group have a greater likelihood of reduction in insulin use,change in C-peptide response,and better glycemic control compared to the control group with a good safety profile.However,all the included randomized control trials have been conducted in high-income countries.High cost of therapy and unknown utility of the molecule in stage 3 disease limit its widespread use.展开更多
Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to tre...Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,gr...Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.展开更多
基金supported by the National Natural Science Foundation of China(U23A20605)Anhui Graduate Innovation and Entrepreneurship Practice Project(2022cxcysj090)+2 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202202)the University Synergy Innovation Program of Anhui Province(GXXT-2020-072)the Outstanding Youth Fund of Anhui Province(2208085J19).
文摘Steel slag(SS)accumulates unavoidably due to its complex and unstable composition,high production volumes,and limited value-added resource utilization.Single or multiple interface modifiers were proposed to enhance the properties of SS through high-speed dispersion,transforming its inherent hydrophilic and oleophobic characteristics into hydrophily and lipophilicity.The modification effects were innovatively assessed by observing the color changes of modified steel slag solutions following the dissolution-settlement equilibrium constant.This approach avoided human-induced errors and improved estimated accuracy in conformance with conventional methods such as oil absorption value,activation index,sedimentation volume,and lipophilicity.The hydrolysis of 3-aminopropyltriethoxysilane(KH)generated–Si(OH)_(3)structure to form hydrogen or covalent bonds with active substances(OH groups)from SS.Concurrently,SS underwent encapsulation via Si–O–Si structure resulting from the dehydration of–Si(OH)_(3).The stearic acid coupling agent(SA),aluminate coupling agent(AC),and titanate coupling agent(TN)underwent chemical reactions with Ca(OH)_(2),Al(OH)_(3),and CaCO_(3)in SS.The acidic SA primarily created stable chemical bonds and acted as a supplement due to its package,reducing surface activity and hydrophilicity while enhancing lipophilicity.Specifically,the optimal modification effect was obtained at 3 wt.%SA.Consequently,3 wt.%SA was established as the benchmark for multiple modifiers and the most effective combination was 3 wt.%SA and 3 wt.%AC.Compared with a single interface modifier,SA corroded the SS surface to provide numerous active sites for further modification by KH,AC,or TN,resulting in a more densely packed structure.In addition,more organic groups on SS prevent the proximity of other particles from agglomerating to achieve dispersion and a synergistic modification,laying a theoretical foundation of SS in a new pathway for organic composite materials.
基金financially supported by the Natural Science Foundation of Guangdong Province (2022A1515012359)the National Natural Science Foundation of China (21902121)+1 种基金the STU Scientific Research Foundation for Talents (NTF21020)the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (2020LKSFG09A)。
文摘Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.
基金Project(2022YFC3902703)supported by the National Key R&D Program of ChinaProject(KF22028)supported by the Special Project for High Quality Development of the Ministry of Industry and Information Technology of China+1 种基金Project(62004143)supported by the National Natural Science Foundation of ChinaProject(2022BAA084)supported by the Key R&D Program of Hubei Province,China。
文摘The excessive demand for phosphorus-based fertilizers is contributing to the undesired byproduct of phosphogypsum(PG),typically found in large quantities in phosphoric acid industry.Without proper management,this industrial waste poses a significant environmental pollution risk.Current technologies are struggle to effectively handle the volume of PG produced,but one promising solution is its conversion into hemihydrate gypsum(CaSO_(4)·0.5 H_(2)O,HH).HH can exist in two phases,α-HH andβ-HH,withα-hemihydrate gypsum(α-HH)being preferred for its complete crystal structure and lower water requirement for hydration.The morphology ofα-HH gypsum is crucial for its material applications,and controlling crystal morphology is possible through the use of suitable crystal modifiers.This review explores various aspects of crystal modifiers and highlights their role in the preparation ofα-HH from PG.It suggests that leveraging the interfacial properties of PG could lead to innovative applications.Additionally,the review outlines future directions for PG development and identifies challenges to be addressed in the next steps.
基金supported by the National Natural Science Foundation of China(22005043,52272193)the National Key Research and Development Program of China(2019YFA0709102 and 2020YFA0714502)+1 种基金the Liaoning Revitalization Talents Program(XLYC2007038,XLYC2008032)the Fundamental Research Funds for the Central Universities(DUT22LAB602,DUT22GJ201).
文摘Advanced photovoltaics,such as ultra-flexible perovskite solar cells(UF-PSCs),which are known for their lightweight design and high power-to-mass ratio,have been a long-standing goal that we,as humans,have continuously pursued.Unlike normal PSCs fabricated on rigid substrates,producing high-efficiency UF-PSCs remains a challenge due to the difficulty in achieving full coverage and minimizing defects of metal halide perovskite(MHP)films.In this study,we utilized Al_(2)O_(3) nanoparticles(NPs)as an inorganic surface modifier to enhance the wettability and reduce the roughness of poly-bis(4-phenyl)(2,4,6-trimethylphenyl)amine simultaneously.This approach proves essentials in fabricating UF-PSCs,enabling the deposition of uniform and dense MHP films with full coverage and fewer defects.We systematically investigated the effect of Al_(2)O_(3) NPs on film formation,combining simulation with experiments.Our strategy not only significantly increases the power conversion efficiency(PCE)from 11.96%to 16.33%,but also promotes reproducibility by effectively addressing the short circuit issue commonly encountered in UF-PSCs.Additionally,our UF-PSCs demonstrates good mechanical stability,maintaining 98.6%and 79.0%of their initial PCEs after 10,000 bending cycles with radii of 1.0 and 0.5 mm,respectively.
文摘The effect of combining different organic friction modifiers(OFMs)with ashless dispersants on the dispersion performance of lubricant oils in sludge was investigated using molecular dynamics(MD)simulations.polyisobutylsuccinimide(PIBSI)was mixed with either glycerol monooleate(GMO)or oleamide(OAM)in a poly-α-olefin(PAO)base oil.The distribution and interaction energy of sludge precursors were analyzed both with and without these additive mixtures.The results show that both the OFMs and dispersants can form hydrogen bonds with sludge precursor molecules,preventing further aggregation.Adding OFMs to lubricant oil-containing dispersants enhances the dispersion of the lubricant.Compared to OAM,GMO forms more hydrogen bonds with sludge precursors,which favors improved dispersion.However,there is strong competition and interaction between GMO and PIBSI,which reduces the dispersant’s effectiveness in mitigating sludge precursor aggregation.The interactions among additives and their impact on performance should be considered when designing high-performance lubricant formulations.
基金Supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).
文摘Wood-polymer composites (WPC) were prepared from wood fiber and four kinds of plastics such as PE, PS, ABS, and SAN. The effects of different modifiers on the mechanical properties of the composites were studied. The results showed modifiers could raise the bonding strength of wood fiber with polymer and improve the mechanical properties of the composites. Different modifiers had different effects on the properties of wood-polymer composites, and comparatively the modifier of isocyanate produced a better result. Wood-polymer composite takes not only the advantages of both wood fiber and polymer, but waterproof, dimensional stability and dynamic strength are also significantly improved. Key word Wood fiber - Thermoplastic polyester - Wood-polymer composites - Modifier - Mechanical properties CLC number TB332 Document code A Foundation item: This study was supported by the Harbin Technology Tackle Key Plan (Development Research of Wood-Polymer Composites with High Wood Matrix) and by Heilongjing Nature Science Fund (Composite Mechanism Study of the Wood Polymer).Biography: XU Min (1963-), Female, Associate professor in Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China.Responsible editor: Chai Ruihai
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195)。
文摘With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.
基金supported by Fundamental Research Funds for the Central Universities(300102214908)Innovation Capability Support Program of Shaanxi(2022TD-07).
文摘To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.
基金Supported by the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province(Grant No.2023013)the National Natural Science Foundation of China(Grant No.12161013)the Science and Technology Program of Guizhou Province(Grant No.ZK[2023]025)。
文摘Semenov-Tian-Shansky has given the solution of the modified classical Yang-Baxter equation, which was called the modified r-matrix. Relevant studies have been extensive in recent times. In this paper, we introduce the concept and representations of modified RotaBaxter Hom-Lie algebras. We develop a cohomology of modified Rota-Baxter Hom-Lie algebras with coefficients in a suitable representation. As applications, we study formal deformations and abelian extensions of modified Rota-Baxter Hom-Lie algebras in terms of second cohomology groups.
基金financially supported by the National Natural Science Foundation of China(52172245)the Key Scientific and Technological Innovation Project of Shandong(2023CXGC010302)the Qingdao Flexible Materials Precision Die-cutting Technology Innovation Center。
文摘In lithium-sulfur batteries(LSBs),the limited utilization of sulfur and the sluggish kinetics of redox reaction significantly hinder their electrochemical performance,especially under high rates and high sulfur loadings.Here,we propose a novel separator structure with an interlayer composed of a vermiculite nanosheet combined with Ketjen Black(VMT@KB)for LSBs,facilitating efficient adsorption and rapid catalytic conversion toward lithium polysulfides(LiPSs).The VMT@KB nanosheets with an electrical double-layer structure and electronic conductivity are obtained through a high-temperature peeling process and Li^(+)exchange treatment in LiCl solution,followed by a mechanical combination process with KB.The results demonstrate that incorporating VMT@KB as an interlayer on a conventional separator enhances the conductivity and limits the LiPSs in the cathode region.The Li-S cell with VMT@KB interlayer shows satisfactory cycle and rate performance,especially in high sulfur loading.It exhibits a remarkable initial discharge capacity of 1225 mAh g^(-1)at 0.5 C and maintains a capacity of 816 mAh g^(-1)after 500 cycles.Besides,the discharge capacity remains 462 mAh g^(-1)even at 6 C.Moreover,the cell with high sulfur loading(8.2 mg cm^(-2))enables stable cycling for 100 cycles at 0.1 C with a discharge capacity of over1000 mAh g^(-1).
基金supported by the National Natural Science Foundation of China(grant number:82404340)the CAMS Innovation Fund for Medical Science(grant number:2021-I2M-1–067)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(grant number:LTGY23H260004)the Beijing Natural Science Foundation(grant number:Z240004).
文摘Objectives Primary prevention targeting modifiable risk factors would reduce the global burden of colorectal cancer,but the quantitative results are uncertain.We aimed to assess the global burden of colorectal cancer attributed to modifiable lifestyle factors and quantify the potential increase in life expectancy resulting from the elimination of these risk factors.Methods Based on the Global Burden of Disease Study 2021,we examined colorectal cancer deaths and disability-adjusted life years attributed to modifiable risk factors(including smoking,diet low in whole grains,diet low in milk,diet high in red meat,diet low in calcium,diet high in processed meat,and diet low in fiber)at the global,regional,and national levels from 1990 to 2021.The abridged period life table method was utilized to quantify the potential gain in life expectancy from eliminating these risk factors.Results Globally in 2021,57.1%of colorectal cancer deaths and 56.4%of disability-adjusted life years were preventable,with rates of 7.55(4.94–9.64)and 174.67(114.54–222.24)per 100,000 population,respectively.The modifiable burden has diminished in the high,high-middle,and low socio-demographic index quintiles and remained steady in the middle one.However,there is a concerning increase in the low-middle one.In 2021,the elimination of global colorectal cancer attributed to modifiable factors would increase the life expectancy for males and females by 0.107 and 0.109 years,respectively.Conclusion Our results quantitatively demonstrate the substantial burden reduction in colorectal cancer and the significant gain in life expectancy that can be achieved by eliminating modifiable lifestyle factors.
基金supported by the National Natural Science Foundation of China(Nos.41975044,42371354,41801021,42101385)Open Fund of Hubei Luojia Laboratory(No.2201000043)the Fundamental Research Funds for National Universities,China University of Geosciences,Wuhan。
文摘As a crucial human activity,dam construction can profoundly impact the surface hydrology patterns.The Three Gorges Reservoir(TGR),as one of the largest hydraulic engineering projects in the world,has gained continuous attention for its eco-hydrological effects.However,further investigation is necessary to understand the runoff and social impacts of the TGR on the Upper Yangtze River.This study first employed a modified SWAT model to simulate runoff,compared scenarios with and without the TGR,and finally evaluated water supply and demand in the Upper Yangtze River.The results showed a significant increasing trend in the surface water area of the Upper Yangtze River from 2000-2020.The modified SWAT model performs well in simulating the runoff,with Nash-Sutcliffe Efficiency and Percent Bias improved by 0.04-0.30 and 2-31.90,respectively.Scenario simulation results revealed that the TGR reduced seasonal differences in runoff.During the flood season,the runoff volume at the Yichang Station in the scenario with the TGR is lower than in the scenario without the TGR,peaking at 4500 m3/s.Conversely,in the dry season,the runoff volume of the scenario with TGR is higher,with a maximum increase of 1500 m3/s.The region exhibiting the greatest runoff variations is the Yangtze River's main stem in the Three Gorges Reservoir region.Besides,the TGR notably alleviated the water supply-demand imbalance in Chongqing during the winter and spring seasons,with a maximum increase of 0.16 in the supplydemand index.This study can contribute significantly to understanding the natural and social impacts of the TGR from the perspective of hydrological and scenario simulation.
文摘Spinal cord injury and treatment opportunities:The adult mammalian spinal cord has a very limited capacity for spontaneous regeneration due to various intrinsic molecular and cellular factors.Although the spinal cord neurons have the capacity to regenerate their axons,the expression of growth inhibitory factors,lack or suppression of proper guidance cues,and profound inflammatory responses do not permit successful regeneration(Khyeam et al.,2021).
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
文摘Use of immunomodulating agents to prevent the progression of autoimmuneβ-cell damage leading to type 1 diabetes mellitus(T1DM)is an interesting area for research.These include non-specific anti-inflammatory agents,immunologic vaccination and anti-inflammatory agents targeting specific immune cells or cytokines.Teplizumab is an anti-CD3-molecule that binds to and leads to the disappearance of the CD3/TCR complex and rendering the T cell anergic to its target antigen.Preclinical and clinical trials have demonstrated its efficacy in reducing the decline in serum C-peptide levels and the need for insulin therapy if used early in the disease process of T1DM.The benefits have been apparent as early as six months to as long as seven years after therapy.It has recently been approved by the Food and Drug Administration to delay the onset of clinical(stage 3)type 1 diabetes in children above 8 years of age.In their recent metaanalysis published in the World Journal of Diabetes,Ma et al found that those in the teplizumab treatment group have a greater likelihood of reduction in insulin use,change in C-peptide response,and better glycemic control compared to the control group with a good safety profile.However,all the included randomized control trials have been conducted in high-income countries.High cost of therapy and unknown utility of the molecule in stage 3 disease limit its widespread use.
基金the funding from Lembaga Penelitian dan Pengabdian Masyarakat(LPPM)Universitas Indonesia,by Riset Kolaborasi Indonesia(RKI)-World Class University(WCU)Program with grant number NKB-1067/UN2-RST/HKP.05.00/2023 and NKB-781/UN2.RST/HKP.05.00/2024.
文摘Detection of target analytes at low concentrations is significant in various fields,including pharmaceuticals,healthcare,and environmental protection.Theophylline(TP),a natural alkaloid used as a bronchodilator to treat respiratory disorders such as asthma,bronchitis,and emphysema,has a narrow therapeutic window with a safe plasma concentration ranging from 55.5-111.0μmol·L^(-1)in adults.Accurate monitoring of TP levels is essential because too low or too high can cause se-rious side effects.In this regard,non-enzymatic electrochemical sensors offer a practical solution with rapidity,portability,and high sensitivity.This article aims to provide a comprehensive review of the recent developments of non-enzymatic electrochemical sensors for TP detection,highlighting the basic principles,electro-oxidation mechanisms,catalytic effects,and the role of modifying materials on electrode performance.Carbon-based electrodes such as glassy carbon electrodes(GCEs),carbon paste electrodes(CPEs),and carbon screen-printed electrodes(SPCEs)have become the primary choices for non-enzymatic sensors due to their chemical stability,low cost,and flexibility in modification.This article identifies the sig-nificant contribution of various modifying materials,including nanomaterials such as carbon nanotubes(CNTs),graphene,metal oxides,and multi-element nanocomposites.These modifications enhance sensors’electron transfer,sensitivity,and selectivity in detecting TP at low concentrations in complex media such as blood plasma and pharmaceutical samples.The electro-oxidation mechanism of TP is also discussed in depth,emphasizing the hydroxyl and carbonyl reaction pathways strongly influenced by pH and electrode materials.These mechanisms guide the selection of the appropriate electrode ma-terial for a particular application.The main contribution of this article is to identify superior modifying materials that can improve the performance of non-enzymatic electrochemical sensors.In a recent study,the combination of multi-element nanocomposites based on titanium dioxide(TiO_(2)),CNTs,and gold nanoparticles(AuNPs)resulted in the lowest detection limit of 3×10^(-5)μmol·L^(-1),reflecting the great potential of these materials for developing high-performance electrochemical sensors.The main conclusion of this article is the importance of a multidisciplinary approach in electrode material design to support the sensitivity and selectivity of TP detection.In addition,there is still a research gap in understanding TP’s more detailed oxidation mechanism,especially under pH variations and complex environments.Therefore,further research on electrode modification and analysis of the TP oxidation mechanism are urgently needed to improve the accuracy and sta-bility of the sensor while expanding its applications in pharmaceutical monitoring and medical diagnostics.By integrating various innovative materials and technical approaches,this review is expected to be an essential reference for developing efficient and affordable non-enzymatic electrochemical sensors.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金supported by Gansu Provincial Science and Technology Plan(23CXGA0195)Longnan Science and Technology Plan(2024CX03)。
文摘Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.