期刊文献+
共找到286篇文章
< 1 2 15 >
每页显示 20 50 100
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
1
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
Modified Black Widow Optimization-Based Enhanced Threshold Energy Detection Technique for Spectrum Sensing in Cognitive Radio Networks
2
作者 R.Saravanan R.Muthaiah A.Rajesh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2339-2356,共18页
This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second... This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques. 展开更多
关键词 Cognitive radio network spectrum sensing noise uncertainty modified black widow optimization algorithm energy detection technique
在线阅读 下载PDF
Two-stage optimization of route,speed,and energy management for hybrid energy ship under sea conditions
3
作者 Xiaoyuan Luo Jiaxuan Wang +1 位作者 Xinyu Wang Xinping Guan 《iEnergy》 2025年第3期174-192,共19页
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an... As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group. 展开更多
关键词 Hybrid ship power system two-stage optimization dispatch speed scheduling sea conditions modified A-star algorithm improved grey wolf optimization algorithm
在线阅读 下载PDF
Modified particle swarm optimization-based antenna tilt angle adjusting scheme for LTE coverage optimization 被引量:5
4
作者 潘如君 蒋慧琳 +3 位作者 裴氏莺 李沛 潘志文 刘楠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期443-449,共7页
In order to solve the challenging coverage problem that the long term evolution( LTE) networks are facing, a coverage optimization scheme by adjusting the antenna tilt angle( ATA) of evolved Node B( e NB) is pro... In order to solve the challenging coverage problem that the long term evolution( LTE) networks are facing, a coverage optimization scheme by adjusting the antenna tilt angle( ATA) of evolved Node B( e NB) is proposed based on the modified particle swarm optimization( MPSO) algorithm.The number of mobile stations( MSs) served by e NBs, which is obtained based on the reference signal received power(RSRP) measured from the MS, is used as the metric for coverage optimization, and the coverage problem is optimized by maximizing the number of served MSs. In the MPSO algorithm, a swarm of particles known as the set of ATAs is available; the fitness function is defined as the total number of the served MSs; and the evolution velocity corresponds to the ATAs adjustment scale for each iteration cycle. Simulation results showthat compared with the fixed ATA, the number of served MSs by e NBs is significantly increased by 7. 2%, the quality of the received signal is considerably improved by 20 d Bm, and, particularly, the system throughput is also effectively increased by 55 Mbit / s. 展开更多
关键词 long term evolution(LTE) networks antenna tilt angle coverage optimization modified particle swarm optimization algorithm
在线阅读 下载PDF
Optimization of multi-revolution low-thrust transfer based on modified direct method
5
作者 崔平远 尚海滨 +1 位作者 任远 栾恩杰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第6期814-818,共5页
A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, th... A modified direct optimization method is proposed to solve the optimal multi-revolution transfer with low-thrust between Earth-orbits. First, through parameterizing the control steering angles by costate variables, the search space of free parameters has been decreased. Then, in order to obtain the global optimal solution effectively and robustly, the simulated annealing and penalty function strategies were used to handle the constraints, and a GA/SQP hybrid optimization algorithm was utilized to solve the parameter optimization problem, in which, a feasible suboptimal solution obtained by GA was submitted as an initial parameter set to SQP for refinement. Comparing to the classical direct method, this novel method has fewer free parameters, needs not initial guesses, and has higher computation precision. An optimal-fuel transfer problem from LEO to GEO was taken as an example to validate the proposed approach. The results of simulation indicate that our approach is available to solve the problem of optimal muhi-revolution transfer between Earth-orbits. 展开更多
关键词 LOW-THRUST optimal transfer modified direct method hybrid algorithm simulated annealing
在线阅读 下载PDF
Solving Optimal Power Flow Using Modified Bacterial Foraging Algorithm Considering FACTS Devices
6
作者 K. Ravi C. Shilaja +1 位作者 B. Chitti Babu D. P. Kothari 《Journal of Power and Energy Engineering》 2014年第4期639-646,共8页
In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the us... In this paper, a new Modified Bacterial Foraging Algorithm (MBFA) method is developed to incorporate FACTS devices in optimal power flow (OPF) problem. This method can provide an enhanced economic solution with the use of controllable FACTS devices. Two types of FACTS devices, thyristor controlled series compensators (TCSC) and Static VAR Compensator (SVC) are considered in this method. The basic bacterial foraging algorithm (BFA) is an evolutionary optimization technique inspired by the foraging behavior of the E. coli bacteria. The strategy of the OPF problem is decomposed in two sub-problems, the first sub-problem related to active power planning to minimize the fuel cost function, and the second sub-problem designed to make corrections to the voltage deviation and reactive power violation based in an efficient reactive power planning of multi Static VAR Compensator (SVC). The specified power flow control constraints due to the use of FACTS devices are included in the OPF problem. The proposed method decomposes the solution of such modified OPF problem into two sub problems’ iteration. The first sub problem is a power flow control problem and the second sub problem is a modified Bacterial foraging algorithm (MBFA) OPF problem. The two sub problems are solved iteratively until convergence. Case studies are presented to show the effectiveness of the proposed method. 展开更多
关键词 Flexible AC Transmission System (FACTS) modified Bacterial FORAGING algorithm (MBFA) optimal Power Flow (OPF) TCSC SVC
在线阅读 下载PDF
A Novel Self Adaptive Modification Approach Based on Bat Algorithm for Optimal Management of Renewable MG 被引量:4
7
作者 Aliasghar Baziar Abdollah Kavoosi-Fard Jafar Zare 《Journal of Intelligent Learning Systems and Applications》 2013年第1期11-18,共8页
In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more ... In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more reliably and economically. In this regard, this paper proposes a novel solution methodology based on bat algorithm to solve the op- timal energy management of MG including several RESs with the back-up of Fuel Cell (FC), Wind Turbine (WT), Photovoltaics (PV), Micro Turbine (MT) as well as storage devices to meet the energy mismatch. The problem is formulated as a nonlinear constraint optimization problem to minimize the total cost of the grid and RESs, simultaneously. In addition, the problem considers the interactive effects of MG and utility in a 24 hour time interval which would in- crease the complexity of the problem from the optimization point of view more severely. The proposed optimization technique is consisted of a self adaptive modification method compromised of two modification methods based on bat algorithm to explore the total search space globally. The superiority of the proposed method over the other well-known algorithms is demonstrated through a typical renewable MG as the test system. 展开更多
关键词 RENEWABLE MICRO-GRID (MG) RENEWABLE Power Sources (RESs) Self Adaptive modified BAT algorithm (SAMBA) Nonlinear Constraint optimization
暂未订购
NEW HMM ALGORITHM FOR TOPOLOGY OPTIMIZATION 被引量:4
8
作者 Zuo Kongtian ZhaoYudong +2 位作者 Chen Liping Zhong Yifang Huang Yuying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期346-350,共5页
A new hybrid MMA-MGCMMA (HMM) algorithm for solving topology optimization problems is presented. This algorithm combines the method of moving asymptotes (MMA) algorithm and the modified globally convergent version... A new hybrid MMA-MGCMMA (HMM) algorithm for solving topology optimization problems is presented. This algorithm combines the method of moving asymptotes (MMA) algorithm and the modified globally convergent version of the method of moving asymptotes (MGCMMA) algorithm in the optimization process. This algorithm preserves the advantages of both MMA and MGCMMA. The optimizer is switched from MMA to MGCMMA automatically, depending on the numerical oscillation value existing in the calculation. This algorithm can improve calculation efficiency and accelerate convergence compared with simplex MMA or MGCMMA algorithms, which is proven with an example. 展开更多
关键词 Topology optimization Method of moving asymptotes (MMA) modified globally convergent version of MMA (MGCMMA) HMM algorithm Convergence
在线阅读 下载PDF
Active set truncated-Newton algorithm for simultaneous optimization of distillation column 被引量:1
9
作者 梁昔明 《Journal of Central South University of Technology》 2005年第1期93-96,共4页
An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are mad... An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are made for the various large-scale problems of varying size. The comparison results between ASTNA and the subspace limited memory quasi-Newton algorithm and between the modified augmented Lagrange multiplier methods combined with ASTNA and the modified barrier function method show the stability and effectiveness of ASTNA for simultaneous optimization of distillation column. 展开更多
关键词 simultaneous optimization of distillation column active set truncated-Newton algorithm modified augmented Lagrange multiplier methods numerical experiment
在线阅读 下载PDF
Rock discontinuity extraction from 3D point clouds using pointwise clustering algorithm
10
作者 Xiaoyu Yi Wenxuan Wu +2 位作者 Wenkai Feng Yongjian Zhou Jiachen Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4429-4444,共16页
Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected ... Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds. 展开更多
关键词 Rock mass discontinuity 3D point clouds Pointwise clustering(PWC)algorithm modified whale optimization algorithm(MWOA)
在线阅读 下载PDF
Optimization of Thermal Aware VLSI Non-Slicing Floorplanning Using Hybrid Particle Swarm Optimization Algorithm-Harmony Search Algorithm
11
作者 Sivaranjani Paramasivam Senthilkumar Athappan +1 位作者 Eswari Devi Natrajan Maheswaran Shanmugam 《Circuits and Systems》 2016年第5期562-573,共12页
Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimat... Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution. 展开更多
关键词 VLSI Non-Slicing Floorplan modified Corner List (MCL) algorithm Hybrid Particle Swarm optimization-Harmony Search algorithm (HPSOHS)
在线阅读 下载PDF
Structural optimization strategy of pipe isolation tool by dynamic plugging process analysis 被引量:3
12
作者 Ting-Ting Wu Hong Zhao +1 位作者 Bo-Xuan Gao Fan-Bo Meng 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1829-1839,共11页
During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce ... During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce the vibration of the flow field during the plugging process by optimizing the surface structure of the PIT.Firstly,the central composite design(CCD)was used to obtain the optimization schemes,and the drag coefficient and pressure coefficient were proposed to evaluate the degree of flow field changes.Secondly,a series of computational fluid dynamics(CFD)simulations were performed to obtain the drag coefficient and pressure coefficient during dynamic plugging.And the mathematical model of drag coefficient and pressure coefficient with the surface structure of the PIT were established respectively.Then,a modified particle swarm optimization(PSO)was applied to predict the optimal value of the surface structure of the PIT.Finally,an experimental rig was built to verify the effectiveness of the optimization.The results showed that the improved method could reduce the flow field vibration by 49.56%.This study provides a reference for the design of the PIT surface structure for flow field vibration technology. 展开更多
关键词 Pipe isolation tool Dynamic analysis Drag coefficient Pressure coefficient modified particle swarm optimization algorithm
原文传递
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
13
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
基于算法优化极限学习机的香芋皮改性膳食纤维制备及其NO_(2)^(-)吸附量预测
14
作者 邓忠惠 谢微 《中国无机分析化学》 北大核心 2025年第6期889-897,共9页
在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜... 在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法(GWO)和海鸥算法(SOA)对ELM进行优化。使用训练数据集对优化后的ELM模型进行训练。使用测试数据集对模型进行验证,评估模型的性能指标。结果显示,5种优化后的ELM模型在各项性能指标上均优于初始ELM模型。在5种优化算法中,SSA-ELM模型表现最为显著,其绝对误差(MAE)、均方误差(MSE)、均方误差根(RMSE)、平均绝对百分比误差(MAPE)分别为0.023498、0.0007391、0.027186和0.037267%,是所有优化算法测试模型中最低值。在测试模型中,原始ELM模型的R^(2)为0.013291,而GA-ELM、PSO-ELM、SSA-ELM、GWO-ELM和SOA-ELM模型的R^(2)分别0.86709、0.98016、0.99971、0.99998和0.99969。这表明5种优化ELM模型具有更高的拟合度、更好的泛化能力和稳定性,且相对于原始ELM模型,R^(2)值有显著提升。优化后的ELM模型,可以快速、准确地预测不同工艺条件下香芋皮改性膳食纤维的NO_(2)^(-)吸附量,减少实验成本和时间,提高生产效率和产品质量,为实际应用提供可靠的预测工具。 展开更多
关键词 香芋皮改性膳食纤维 响应面法 极限学习机 算法优化 预测
在线阅读 下载PDF
基于遗传优化算法-反向传播神经网络的机制砂聚合物改性砂浆力学性能预测 被引量:3
15
作者 田浩正 乔宏霞 +3 位作者 张云升 冯琼 王鹏辉 谢晓扬 《复合材料学报》 北大核心 2025年第4期2034-2047,共14页
对聚合物改性砂浆(PMM)进行力学性能评价是保证安全使用的必要条件。为快速准确地获得具有优异力学性能的PMM,设计了拓扑结构为6-14-2的反向传播的神经网络(BPNN)预测模型,并使用遗传优化算法(GA)进行优化。GA-BPNN模型的输入层为水泥... 对聚合物改性砂浆(PMM)进行力学性能评价是保证安全使用的必要条件。为快速准确地获得具有优异力学性能的PMM,设计了拓扑结构为6-14-2的反向传播的神经网络(BPNN)预测模型,并使用遗传优化算法(GA)进行优化。GA-BPNN模型的输入层为水泥、纤维素醚、可再分散乳胶粉、消泡剂、凝灰岩石粉和粉煤灰的含量,输出层为抗压强度和粘结强度。数据集为520个,其中60%的数据用于建立模型,40%的数据用于验证模型。以实测抗折强度、抗压强度和粘结强度作为PMM的力学性能评价指标,通过相关性矩阵分析和主成分分析确定原材料与PMM力学性能之间的关系,同时对力学性能评价指标进行对比分析。结果表明:在7d和28 d时,可再分散乳胶粉和消泡剂与PMM力学性能发展呈正相关;7 d时,石粉、粉煤灰与抗压、抗折强度呈负相关,纤维素醚与粘结强度呈正相关;28 d时,水泥与抗压、粘结和抗折强度负相关,石粉、粉煤灰呈正相关。GA优化算法可以显著提升BPNN模型的预测精度,GA-BPNN对抗压强度和粘结强度的预测性能评价指标分别为决定系数R^(2)=0.918、平均绝对误差R_(MAE)=17.507、平均绝对百分比误差R_(MAPE)=0.299、均方根误差R_(RMSE)=7.849;R^(2)=0.922、R_(MAE)=17.101、R_(MAPE)=0.282、R_(RMSE)=8.077。因此,GA-BPNN可以为PMM在力学性能方面提供精确的预测并对其配合比设计进行指导,对于工程实践具有重要意义。 展开更多
关键词 聚合物改性砂浆 力学性能 反向传播神经网络 遗传优化算法 配合比优化 机制砂
原文传递
基于MGASA的装配车间物流协同优化方法研究
16
作者 林健树 王小巧 《合肥工业大学学报(自然科学版)》 北大核心 2025年第3期302-309,共8页
针对乘用车发动机装配车间内处理大规模订单排产和产品配送调度方案存在求解时间长、效率低、协同优化效果不明显的问题,文章提出一种基于改进遗传模拟退火算法(modified genetic algorithm and simulated annealing,MGASA)的装配车间... 针对乘用车发动机装配车间内处理大规模订单排产和产品配送调度方案存在求解时间长、效率低、协同优化效果不明显的问题,文章提出一种基于改进遗传模拟退火算法(modified genetic algorithm and simulated annealing,MGASA)的装配车间物流协同优化方法。分析多品种小批量面向订单式生产的乘用车装配车间物流的特点,确定优化目标为最小化客户期望时间、提前延迟成本和物流配送成本;针对问题特征提出装配订单生产配送调度的优先级判定规则和4类特征指标以便进行问题编码和适应度计算,且在同一温度下多次进行种群迭代进化和淬火操作,扩大可行解的邻域范围,以期获得全局最优解,得到装配车间内的生产配送调度方案;最后在不同规模的数据集上进行实例验证。实验结果表明,该方法可达到较高的求解效率,实现乘用车装配车间物流协同优化调度方案的快速制定,具有一定的应用价值。 展开更多
关键词 装配车间物流 车辆路径优化 协同优化 改进遗传模拟退火算法(MGASA) 时间窗
在线阅读 下载PDF
IEEE 1149.10协议的多扫描通道同步测试数据包优化策略
17
作者 杨竞波 黄新 何堂泉 《现代电子技术》 北大核心 2025年第2期55-60,共6页
为了提高IEEE 1149.10协议中多扫描通道同步测试数据包编码效率,提出一种基于多策略改进野狗算法(mMDOA)的多扫描通道数据包优化方法。首先,多策略改进野狗算法使用自适应追击步长与螺旋游走结合的迫害策略,并通过基于反向精英的食腐策... 为了提高IEEE 1149.10协议中多扫描通道同步测试数据包编码效率,提出一种基于多策略改进野狗算法(mMDOA)的多扫描通道数据包优化方法。首先,多策略改进野狗算法使用自适应追击步长与螺旋游走结合的迫害策略,并通过基于反向精英的食腐策略,帮助算法跳出局部最优,提升全局搜索的能力;其次,根据IEEE 1149.10多扫描通道同步测试数据包编码格式,提出新的扫描通道分组方法,通过扫描数据大小和数据交织大小计算组内扫描通道数目,以组内长度差为目标函数,使用mMDOA选择组内扫描通道。经实验验证,使用mMDOA算法能减少约30%数据包数量,并有效地缩短了数据包编码时间。 展开更多
关键词 IEEE 1149.10协议 多扫描通道同步测试 改进野狗算法 螺旋游走策略 通道分组 数据包编码
在线阅读 下载PDF
基于改进蚁群遗传算法的无人艇最短航路径规划
18
作者 孙蕴菲 仉天宇 +3 位作者 尹建川 黄应邦 张峻萍 林汛 《船舶工程》 北大核心 2025年第6期92-101,共10页
[目的]为实现无人艇在万山群岛内以最短航行时间完成多航点巡航任务,提出一种基于改进后的时间蚁群遗传算法(T-ACOGA)最短航时路径规划方法。[方法]引入时间启发因子,将蚁群算法寻优目的改为路径航时,并控制信息素的增量。随后融合改进... [目的]为实现无人艇在万山群岛内以最短航行时间完成多航点巡航任务,提出一种基于改进后的时间蚁群遗传算法(T-ACOGA)最短航时路径规划方法。[方法]引入时间启发因子,将蚁群算法寻优目的改为路径航时,并控制信息素的增量。随后融合改进后的时间蚁群算法(T-ACO)和遗传算法(GA),将每代最优路径作为GA的初始种群,从而克服GA生成初始种群的盲目性。考虑风对无人艇速度的影响,构建由路径航时和路径平滑度组成的T-ACOGA适应度函数,平滑函数值为路径所有节点角度对应惩罚值之和。[结果]无风情况下,相比于基本蚁群算法和T-ACO,T-ACOGA路径航时分别减少近7.66%和6.74%;有风情况下,相比于T-ACO,T-ACOGA路径航时减少近11.345%,并且在有风或无风的情况下,T-ACOGA均能够提高80%以上的路径平滑值,[结论]说明该算法规划的路径航时更短且更平滑,有利于提高无人艇航行效率。 展开更多
关键词 无人艇 路径规划 改进蚁群算法 遗传算法 最短航时路径
原文传递
基于改进的TSO算法的质子交换膜燃料电池模型参数辨识
19
作者 李爽爽 郑慧 曹玉波 《吉林化工学院学报》 2025年第3期63-68,共6页
基于电化学反应原理和半经验方法,构建质子交换膜燃料电池(PEMFC)电堆的输出特性模型。提出改进瞬态搜索优化(MTSO)算法,通过Tent混沌映射策略初始化搜索代理组,利用非线性递减策略和全局反向学习策略提高全局寻优能力,用于辨识PEMFC半... 基于电化学反应原理和半经验方法,构建质子交换膜燃料电池(PEMFC)电堆的输出特性模型。提出改进瞬态搜索优化(MTSO)算法,通过Tent混沌映射策略初始化搜索代理组,利用非线性递减策略和全局反向学习策略提高全局寻优能力,用于辨识PEMFC半机理模型中的未知参数。仿真结果表明,对比于TSO算法、增强的瞬态搜索优化(ETSO)算法及哈里斯鹰优化(HHO)算法,MTSO算法在PEMFC模型参数辨识方面具有更优的性能,对燃料电池系统优化设计及控制有一定的参考意义。 展开更多
关键词 质子交换膜燃料电池 模型 改进的瞬态搜索优化算法 参数辨识
在线阅读 下载PDF
基于MGWO-DEKF算法的锂离子电池状态估计研究
20
作者 刘鹏辉 刘胜永 邓丹 《广西科技大学学报》 2025年第5期81-88,共8页
电池荷电状态(SOC)估计是电动汽车稳定运行的重要保障。为提高SOC的估算精度,本文提出一种基于改进灰狼遗忘因子的双扩展卡尔曼滤波算法(MGWO-DEKF)。该方法以双极化模型(DP-Thevenin)为基础,通过改进灰狼优化算法(MGWO)实时调整双扩展... 电池荷电状态(SOC)估计是电动汽车稳定运行的重要保障。为提高SOC的估算精度,本文提出一种基于改进灰狼遗忘因子的双扩展卡尔曼滤波算法(MGWO-DEKF)。该方法以双极化模型(DP-Thevenin)为基础,通过改进灰狼优化算法(MGWO)实时调整双扩展卡尔曼滤波的噪声协方差矩阵,2个扩展卡尔曼滤波算法分别对SOC、电池健康状态(SOH)进行估计。高精度的SOC估计值提高SOH估计精度,又由于实验过程中电池容量不断衰减,影响SOC估计精度,因此,准确估计SOH值并反馈修正SOC值,有助于提高SOC估计精度,从而实现SOC和SOH联合估计。实验结果表明:MGWO-DEKF在HPPC工况下,SOC最大误差为0.77%,平均误差为0.29%,估计容量最大误差为0.044A·h;在BBDST工况下,SOC最大误差为0.59%,平均误差为0.31%,估计容量最大误差为0.016A·h,证明本文方法正确有效。 展开更多
关键词 荷电状态(SOC) 健康状态(SOH) 改进灰狼优化算法(MGWO) 双扩展卡尔曼滤波(DEKF)
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部