To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically ...To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.展开更多
Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,gr...Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.展开更多
Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavemen...Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavements.This study consolidated findings from multiple research efforts on using nanomaterials for modifying SBS modified asphalt(SBS MA)and conducted a comprehensive literature review.Initially,it discussed the importance of SBS MA within asphalt modification systems and identified the key nanomaterials utilized in SBS modified asphalt.After this,it reviewed their preparation methods,dispersion and characterization techniques,and their impact on the key performance parameters of SBS MA binder and its mixture such as viscosity,rutting resistance,fatigue resistance,ageing and moisture damage etc.Additionally,it highlighted the advantages of nanomaterials over other modifiers.This study also addressed the challenges and limitations of incorporating nanomaterials in SBS MA.The findings indicated that when properly integrated,nanomaterials could significantly improve the performance of SBS MA,making them a promising addition to future road construction and maintenance projects.However,using nanomaterials for SBS MA modifications and mixtures has been challenged by limited practical applications,insufficient life cycle cost analyses,a lack of standardized guidelines,cost-effective nanomaterials and insufficient mixing procedures.Those areas require additional research to realise the potential application of nanomaterials in SBS modified asphalt modifications full.展开更多
In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,...In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.展开更多
The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test....The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.展开更多
Both macro and micro-methods were introduced to study the physical and chemical properties of thermal oxidative aging of SBS (styrene-butadiene-styrene) modified asphalt. The physical properties of SBS modified asph...Both macro and micro-methods were introduced to study the physical and chemical properties of thermal oxidative aging of SBS (styrene-butadiene-styrene) modified asphalt. The physical properties of SBS modified asphalt before and after aging were analyzed by normal tests. The structure and quality variation of SBS modified asphalt during the aging process was analyzed by FTIR (Fourier transform infrared spectrum). FTIR result shows that the degeneration of SBS modified asphalt is mainly caused by oxidative reaction and rupture of C=C double bond. The molecular weight variations of asphalt function groups and SBS polymer were studied by GPC (Gel Permeation Chromatography). GPC result shows that small molecules transform into larger one in asphalt and SBS polymer molecule degrade during the aging process. SBS polymer may lose its modifying function after long time aging.展开更多
The aging mechanism of SBS modified asphalt during its aging process was studied.The characterizations of base asphalt,SBS polymer and its modified asphalt were determined in different aging time by Fourier transform ...The aging mechanism of SBS modified asphalt during its aging process was studied.The characterizations of base asphalt,SBS polymer and its modified asphalt were determined in different aging time by Fourier transform infrared spectrum(FTIR).FTIR shows that oxidative dehydrogenation reaction occurs in asphalt,and unsaturated carbon bond is generated under short-term thermal aging condition.Additionally,SBS polymer was aged significantly under that condition,the speed of which was faster than that of base asphalt.The aging laws of both asphalt and SBS polymer during the aging process of SBS modified asphalt were similar to their aging laws respectively.Due to the protective effect between asphalt and SBS polymer,the aging degrees of asphalt and SBS polymer were lower than those aged independently.展开更多
The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade ...The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade tests including penetration,soften point,ductility and elastic recovery and SuperpaveTM PG grade tests including DSR,BBR and DDT were conducted.The rejuvenation effect of aged PMB by utilizing a fluid recycling agent in common use for binder rejuvenation was evaluated.And then the compound rejuvenation effect of aged PMB by utilizing the recycling agent with a new modifying additive for binder modification was evaluated.The experimental results indicated that the recycling agent in common use currently does not apply to polymer modified asphalt binder rejuvenation.But the recycling agent together with the modifying additive can restore the characteristics of aged polymer modified binder very well.Therefore,compound rejuvenation of polymer modified asphalt binder is recommended.展开更多
A test for crumb rubber modified asphalt containing 20% crumb rubber particles(30 mesh) was performed using a scanning electron microscope(SEM).The experimental results indicate that the crumb rubber particles are...A test for crumb rubber modified asphalt containing 20% crumb rubber particles(30 mesh) was performed using a scanning electron microscope(SEM).The experimental results indicate that the crumb rubber particles are evenly distributed in the asphalt.Shear rate sweep and shear-temperature sweep tests on the crumb rubber modified asphalt at-20-80 ℃ using a dynamic shear rheology(DSR) instrument,were carried out.The tests show that the complex modulus decreases with increasing temperature;at equivalent temperature,higher load frequencies lead to a larger complex modulus,and this value increasingly decreases as the temperature increases;the phase angle increases with temperature and decreases as the load frequency increases.It can be concluded that the rutting resistance limiting temperature of crumb rubber modified asphalt is 78 ℃,and the anti-fatigue limiting temperature is 16 ℃,which shows that the asphalt has preferable rutting resistance characteristics at high temperature,as well as anti-fatigue characteristics.In addition,the complex modulus master curve at different temperatures was plotted according to the time temperature equivalence principle,which allows the study of the dynamic state behavior of crumb rubber modified asphalt at a wide range of load frequency.展开更多
Interfacing and compatibility are the most challenging issues that affect the performance of polymer modified asphalt.Mechanisms of interfacial enhancement among four base asphalt components(asphaltenes,resins,aromati...Interfacing and compatibility are the most challenging issues that affect the performance of polymer modified asphalt.Mechanisms of interfacial enhancement among four base asphalt components(asphaltenes,resins,aromatics,and saturate),styrene-butadiene-styrene(SBS),and carbon nanotubes(CNTs)were investigated by molecular dynamics simulation,with the aim of understanding the key parameters that control the compatibility of CNTs and interphase behavior on the molecular scale.The compatibility of SBS-modified asphalt(SBSMA)was simulated based on self-assembly theory using indexes of binding energy,mean square displacement,diffusion coefficient,and relative concentration distribution.The interphase behavior and microstructure were observed by fluorescence microscopy and scanning electron microscopy.In addition,a rutting experiment was used to verify the molecular dynamics simulation based on macroscopic performance.The results showed that after adding CNTs,the binding energy of the SBS and aromatics increased from 301.8343 to 327.1102 kcal/mol.The diffusion coefficient of the SBS and asphaltenes decreased more than 3.2×10-11 m2/s,and the correlation coefficients between the diffusion coefficient and the molecular weight,surface area and volume were all lower than 0.3.Relative concentration distribution curves indicated that CNTs promote the ability of SBS to swell.Microscopic observations demonstrated that the swelling ability of SBS was increased by CNTs.Overall,the interphase of SBSMA was improved by the additional reinforcement,swelling,and diffusion provided by CNTs.Finally,the rutting experiment found that no matter what the temperature,the rutting factor of CNT/SBSMA is higher than that of SBSMA,which corroborates the findings from the molecular dynamics simulations.展开更多
The microstructure and dynamic rheological characteristics of asphalt containing different polymer modifiers (crumb rubber, styrene-butadiene-styrene and crumb rubber mix with styrene- butadiene-styrene) at mid and ...The microstructure and dynamic rheological characteristics of asphalt containing different polymer modifiers (crumb rubber, styrene-butadiene-styrene and crumb rubber mix with styrene- butadiene-styrene) at mid and high service temperature levels were investigated by using scanning electron microscopy(SEM), dynamic shear rheometer(DSR) and repeat creep test. The main objective of the investigation was to rank the modifiers based on their effect on performance characteristics of asphalt under service conditions. To evaluate the effect of different modifiers on the viscoelastic response of asphalt, the temperature and frequency dependences of the dynamic viscoelastic properties were compared. The mid-temperature fatigue resistance and high-temperature rutting resistance of three polymer modified asphalts were evaluated to predict their field performance in roads. Based on the current results, an improved rutting factor was proposed to determine the rutting resistance of asphalt pavements. In addition, the viscous stiffness (Gv), defined as the reciprocal of viscous compliance, was used to evaluate the high-temperature deformation resistance of asphalt mixtures. The experimental results indicate that the asphalt containing crumb rubber only shows superior performance at mid and high service temperatures in all three modified asphalt binders due to the action of the crumb rubber.展开更多
In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT conte...In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT content on properties of CRMA were studied.The rutting factor obtained by dynamic shear rheological(DSR)test was adopted to evaluate the high-temperature performance.The creep stiffness and m value determined by the bending beam rheometer(BBR)test were employed to evaluate the low-temperature performance.The softening point,ductility,rutting factor before and after rolling thin film ovens test(RTFOT)and pressure aging vessel test(PAV)were compared to characterize the aging properties.Moreover,the segregation test after being reserved for 48 h and 7 d was conducted,and the softening point and rutting factor of upper and lower layers of segregation pipe were adopted to evaluate the storage stability.The results indicated that the high-temperature performance and anti-aging performance were developed with the increasing content of OMMT,while the low-temperature performance deteriorated.The storage stability was improved with the increasing content of OMMT before the content exceeded 4%,after which the storage stability declined.Taking account of all factors,it is suggested that the optimum content of OMMT is 3%−4%.展开更多
Polyurethane(PU),with excellent physical and chemical properties and high designability,is one of the ideal materials for asphalt modification in the future.In this paper,based on the limitations of traditional asphal...Polyurethane(PU),with excellent physical and chemical properties and high designability,is one of the ideal materials for asphalt modification in the future.In this paper,based on the limitations of traditional asphalt modifiers,the preparation process,relative advantages and development prospects of PU as asphalt modifiers are described.Subsequently,the spatial structure,physical and chemical properties of PU synthetic raw materials were combined with the modification properties of PU to analyze the effect and influence of PU on asphalt modification.Specifically,polyurethane modified asphalt(PUMA)is divided into thermoplastic polyurethane modified asphalt(TP-PUMA)and thermosetting polyurethane modified asphalt(TS-PUMA).The gain effect of TPPUMA in high-temperature performance,low-temperature performance,aging resistance,fatigue resistance,weathering performance and bonding performance is obvious.In addition,it has good storage stability.With excellent road performance,TS-PUMA makes up for the shortcomings of epoxy asphalt in terms of lowtemperature performance and compatibility.Finally,due to the development trend of functional diversification of modified asphalt,the research basis and status of several new modified asphalts based on PU properties are described.Because the systematic study of PUMA is insufficient,this paper proposes corresponding research.To provide guidance and ideas for the research of PU modified asphalt.展开更多
Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30 mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution...Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30 mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution of crumb rubber particles in asphalt. The SEM pictures reveal that the crumb rubber particles distribute evenly in the asphalt and they are compatible well with asphalt. The shear creep test of crumb rubber modified asphalt was carried out at -10 ℃ and 40 ℃ by Dynamic Shear Rheology (DSR). The shearing deformation at different temperature and creep stiffness modulus curve at loading stage of crumb rubber modified asphalt have been measured. The stiffness modulus of crumb rubber modified asphalt is much temperature sensitive and it decays much quick at the early stage of loading than normal asphalt. The rate of decay of stiffness modulus is slow at the subsequent stage and stiffness modulus approaches to a stable value at the final stage at a higher temperature. In addition, Burgers model is suitable to describe and simulate experimental results of viscoelastic properties of the crumb rubber modified asphalt.展开更多
With the rapid development of asphalt pavement technology,it has attracted considerable attention to improving the durability of asphalt pavement.An effective action is to use modified asphalt with high performance an...With the rapid development of asphalt pavement technology,it has attracted considerable attention to improving the durability of asphalt pavement.An effective action is to use modified asphalt with high performance and durability.Polyurethane(PU)has been used in asphalt pavement engineering to enhance the durability and service life of asphalt pavement because of its excellent high-temperature performance,toughness,wear resistance,aging resistance and oil resistance.However,PU modified asphalt technology is still in the exploratory stage.The preparation,modification mechanism and working performances of PU modified asphalt need to be further clarified.Therefore,this paper summarized the research progress of PU modified asphalt and its mixture.The composition of PU modified asphalt was introduced.The addition methods of PU materials and preparation process parameters of the PU modified asphalt were determined.The modification mechanism of PU on asphalt was discussed.The effects of polyurethane on asphalt were analyzed and the road performances of its mixture were evaluated.Finally,the development tendency towards PU modified asphalt and its mixture were forecasted.展开更多
The phenomenon of cyclic hardening is observed in fatigue tests of modified asphalt controlled by low strain/stress level and it is not clear how the phenomenon affects the fatigue properties of binders. The special t...The phenomenon of cyclic hardening is observed in fatigue tests of modified asphalt controlled by low strain/stress level and it is not clear how the phenomenon affects the fatigue properties of binders. The special time weep tests were performed to investigate the point. Tests results indicate that the cyclic hardening is caused by the rearrangement of molecules in binders, and it can make the inner structure of binders getting stable and increase the fatigue properties of asphalt binders. But fatigue damage occurs when fatigue tests start, no matter the phenomenon of cyclic hardening happens or not. If the controlled load is low, the effect of rearrangement of molecules on material is beyond the effect of fatigue damage so that the cyclic hardening can be observed. When the load conditions get worse, the effect of slight fatigue damages produced in hardening stage will show.展开更多
Waste rubber-modified asphalt has good anti-aging properties and can significantly improve the service life of asphalt pavements. For domestic and foreign scholars of rubber modified asphalt thermal oxygen aging, phot...Waste rubber-modified asphalt has good anti-aging properties and can significantly improve the service life of asphalt pavements. For domestic and foreign scholars of rubber modified asphalt thermal oxygen aging, photo-oxidative aging and water aging some behavioural research, and rubber asphalt aging after the characteristics of the research progress are reviewed. Especially rubber-modified asphalt after light, water and other multi-factor agingsituations, the aging situation is more serious, for rubber-modified asphalt mixture aging, rubber asphalt anti-aging process research and analysis means are still very few, the future research must have more thinking.展开更多
The article expounds modified asphalt technology by introducing commonly used modifiers and fillers and analyzing the construction technology of modified asphalt.The use of modified asphalt in municipal roads provides...The article expounds modified asphalt technology by introducing commonly used modifiers and fillers and analyzing the construction technology of modified asphalt.The use of modified asphalt in municipal roads provides new alternatives for asphalt pavement materials,but also solves the existing construction problems and reduces project costs.Therefore,the research and application of modified asphalt using new materials and new processes is a crucial aspect in road construction.展开更多
Traditional pavement is prone to cracks,and other distresses in cold regions.In this case,asphalt modification is a common technique used to improve the performance of asphalt.This study attempts to compare the low te...Traditional pavement is prone to cracks,and other distresses in cold regions.In this case,asphalt modification is a common technique used to improve the performance of asphalt.This study attempts to compare the low temperature properties of three modified asphalts.For this purpose,the addition of crumb rubber(CR),modified crumb rubber(MCR),and styrene-butadiene-styrene(SBS)to the base asphalt,respectively,and CR modified asphalt,MCR modified asphalt,and SBS modified asphalt is firstly prepared.Then,the asphalt specimens are subjected to a thin film oven test(TFOT)and pressurized aging vessel(PAV)test.The bending beam rheometer(BBR)test is conducted to compare the rheology characteristics and anti-aging performance of three modified asphalts.Furthermore,the low temperature performance of three modified asphalts is compared by three approaches based on the performance grade(PG),critical low temperature,and Burgers model.The BBR results show that the CR modified asphalt has the best low temperature performance.However,the CR modified asphalt show poor aging resistance,SBS modified asphalt,and MCR modified asphalt have better aging resistance.In terms of the Burgers model,it is established to analyze the resistance to low temperature cracking of four asphalts from the perspective of viscoelastic properties.Different viscoelastic parameters indicate that the low temperature performance of CR modified asphalt is superior to the other asphalts,which is consistent with the result of the critical low temperatures.展开更多
The application of waste crumb rubber to modified asphalt can not only improve pavement performance,but also make full use of renewable resources,which is of great significance to environmental protection.However,the ...The application of waste crumb rubber to modified asphalt can not only improve pavement performance,but also make full use of renewable resources,which is of great significance to environmental protection.However,the waste crumb rubber modified asphalt has some disadvantages such as poor storage stability,high viscosity and high construction temperature requirement,which restricts the application of crumb rubber modified asphalt in road engineering.In order to improve the storage stability and construction workability of waste crumb rubber modified asphalt,in this paper hydrogen peroxide is adopted for the surface oxidation treatment of waste crumb rubber,to prepare five kinds of hydrogen peroxide treated waste crumb rubber modified asphalt with waste crumb rubber dosage of15%,20%,25%,30%,and 35%(wt%).The pavement performance was studied by conventional performance tests and rheological properties tests.Then,the microscopic mechanism was studied by scanning electron microscopy,infrared spectroscopy and thermogravimetric analysis.The results show that the waste crumb rubber becomes fluffy and has a richer pore structure on the surface after hydrogen peroxide treatment,which makes it easier for the light components in the asphalt to penetrate into the waste crumb rubber,and thus promotes its dissolution in asphalt,thereby improving the storage stability,construction workability,and low temperature performance of waste crumb rubber modified asphalt,but reduces the high temperature and elastic properties.At the same time,the surface polarity of activated waste crumb rubber is enhanced,and esterification reaction occurs with carboxyl groups,sulfoxides and acid anhydrides in asphalt,which effectively increases the interface bonding between asphalt and the waste crumb rubber,and further improves the storage stability,construction workability and low temperature performance of the waste crumb rubber modified asphalt.The optimum dosage of waste crumb rubber modified asphalt treated with hydrogen peroxide is 30%.展开更多
基金supported by Fundamental Research Funds for the Central Universities(300102214908)Innovation Capability Support Program of Shaanxi(2022TD-07).
文摘To reduce the temperature diseases of asphalt pavement,improve the service quality of road and extend service life,the research of inorganic powders that reduce the temperature of asphalt pavements was systematically sorted out.The common types,physicochemical properties and application methods of inorganic powders were defined.The road performances of modified asphalt and its mixture were evaluated.The modification mechanism of inorganic powders in asphalt was analyzed.On this basis,the cooling effect and cooling mechanism of inorganic powders was revealed.The results indicate that inorganic powders are classified into hollow,porous,and energy conversion types.The high-temperature performance of inorganic powders modified asphalt and its mixture is significantly improved,while there is no significant change in low-temperature performance and water stability.The average increase in rutting resistance factor(G*/sin(δ))and dynamic stability is 40%–72%and 30%–50%,respectively.The modification mechanism of inorganic powders in asphalt is physical blending.The thermal conductivity of hollow and porous inorganic powders modified asphalt mixture decreases by 30.05%and 43.14%,respectively.The temperature of hollow,porous and energy conversion inorganic powders modified asphalt mixture at 5 cm decreases by 2.3 ℃–3.5 ℃,0.8 ℃–3.7 ℃and 4.1 ℃–4.7℃,respectively.Hollow and porous inorganic powders block heat conduction,while energy conversion inorganic powders achieve cooling through their functional properties.
基金supported by Gansu Provincial Science and Technology Plan(23CXGA0195)Longnan Science and Technology Plan(2024CX03)。
文摘Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.
基金supported by the Key R&D Project in Shaanxi Province(No.2024GX-YBXM-371)Shaanxi Qinchuangyuan“Scientists+Engineers”Team Construction Project(2025QCY-KXJ-141).
文摘Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavements.This study consolidated findings from multiple research efforts on using nanomaterials for modifying SBS modified asphalt(SBS MA)and conducted a comprehensive literature review.Initially,it discussed the importance of SBS MA within asphalt modification systems and identified the key nanomaterials utilized in SBS modified asphalt.After this,it reviewed their preparation methods,dispersion and characterization techniques,and their impact on the key performance parameters of SBS MA binder and its mixture such as viscosity,rutting resistance,fatigue resistance,ageing and moisture damage etc.Additionally,it highlighted the advantages of nanomaterials over other modifiers.This study also addressed the challenges and limitations of incorporating nanomaterials in SBS MA.The findings indicated that when properly integrated,nanomaterials could significantly improve the performance of SBS MA,making them a promising addition to future road construction and maintenance projects.However,using nanomaterials for SBS MA modifications and mixtures has been challenged by limited practical applications,insufficient life cycle cost analyses,a lack of standardized guidelines,cost-effective nanomaterials and insufficient mixing procedures.Those areas require additional research to realise the potential application of nanomaterials in SBS modified asphalt modifications full.
基金Funded by Natural Science Foundation of Inner Mongolia,China (No. 2019MS05033)。
文摘In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.
基金The National Natural Science Foundation of China(No50578038)the PhDPrograms Foundation of Ministry of Education of China (No20050286008)
文摘The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.
基金Funded by the National Natural Science Foundation of China(Nos.50878054,51108081)
文摘Both macro and micro-methods were introduced to study the physical and chemical properties of thermal oxidative aging of SBS (styrene-butadiene-styrene) modified asphalt. The physical properties of SBS modified asphalt before and after aging were analyzed by normal tests. The structure and quality variation of SBS modified asphalt during the aging process was analyzed by FTIR (Fourier transform infrared spectrum). FTIR result shows that the degeneration of SBS modified asphalt is mainly caused by oxidative reaction and rupture of C=C double bond. The molecular weight variations of asphalt function groups and SBS polymer were studied by GPC (Gel Permeation Chromatography). GPC result shows that small molecules transform into larger one in asphalt and SBS polymer molecule degrade during the aging process. SBS polymer may lose its modifying function after long time aging.
基金Funded by the National Natural Science Foundation of China(No.50878054)
文摘The aging mechanism of SBS modified asphalt during its aging process was studied.The characterizations of base asphalt,SBS polymer and its modified asphalt were determined in different aging time by Fourier transform infrared spectrum(FTIR).FTIR shows that oxidative dehydrogenation reaction occurs in asphalt,and unsaturated carbon bond is generated under short-term thermal aging condition.Additionally,SBS polymer was aged significantly under that condition,the speed of which was faster than that of base asphalt.The aging laws of both asphalt and SBS polymer during the aging process of SBS modified asphalt were similar to their aging laws respectively.Due to the protective effect between asphalt and SBS polymer,the aging degrees of asphalt and SBS polymer were lower than those aged independently.
基金Funded in Part by the National Natural Science Foundation of China (No. 50878054)
文摘The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade tests including penetration,soften point,ductility and elastic recovery and SuperpaveTM PG grade tests including DSR,BBR and DDT were conducted.The rejuvenation effect of aged PMB by utilizing a fluid recycling agent in common use for binder rejuvenation was evaluated.And then the compound rejuvenation effect of aged PMB by utilizing the recycling agent with a new modifying additive for binder modification was evaluated.The experimental results indicated that the recycling agent in common use currently does not apply to polymer modified asphalt binder rejuvenation.But the recycling agent together with the modifying additive can restore the characteristics of aged polymer modified binder very well.Therefore,compound rejuvenation of polymer modified asphalt binder is recommended.
基金Funded by the Communication Science and Technology Foundation of Inner Mongolia (NJ-2005-25)
文摘A test for crumb rubber modified asphalt containing 20% crumb rubber particles(30 mesh) was performed using a scanning electron microscope(SEM).The experimental results indicate that the crumb rubber particles are evenly distributed in the asphalt.Shear rate sweep and shear-temperature sweep tests on the crumb rubber modified asphalt at-20-80 ℃ using a dynamic shear rheology(DSR) instrument,were carried out.The tests show that the complex modulus decreases with increasing temperature;at equivalent temperature,higher load frequencies lead to a larger complex modulus,and this value increasingly decreases as the temperature increases;the phase angle increases with temperature and decreases as the load frequency increases.It can be concluded that the rutting resistance limiting temperature of crumb rubber modified asphalt is 78 ℃,and the anti-fatigue limiting temperature is 16 ℃,which shows that the asphalt has preferable rutting resistance characteristics at high temperature,as well as anti-fatigue characteristics.In addition,the complex modulus master curve at different temperatures was plotted according to the time temperature equivalence principle,which allows the study of the dynamic state behavior of crumb rubber modified asphalt at a wide range of load frequency.
基金the Innovative Funds Plan of Henan University of Technology(Nos.2020ZKCJ05 and 2020ZKCJ22)the Science and Technology Planning Project of Henan Province(No.192102310229)+4 种基金the Cultivation Plan for Youth Backbone Teachers of Institution of Higher Education by Henan Province(No.2019GGJS086)the Cultivation Plan for Youth Backbone Teachers by Henan University of Technologythe Key Science and Technology Research Project of Henan Provincial Department of Education(No.21A580002)the Foundation for Distinguished Young Talents of Henan University of Technology(No.2018QNJH09)the Central Public-interest Scientific Institution Basal Research Fund(No.2020–9049),China。
文摘Interfacing and compatibility are the most challenging issues that affect the performance of polymer modified asphalt.Mechanisms of interfacial enhancement among four base asphalt components(asphaltenes,resins,aromatics,and saturate),styrene-butadiene-styrene(SBS),and carbon nanotubes(CNTs)were investigated by molecular dynamics simulation,with the aim of understanding the key parameters that control the compatibility of CNTs and interphase behavior on the molecular scale.The compatibility of SBS-modified asphalt(SBSMA)was simulated based on self-assembly theory using indexes of binding energy,mean square displacement,diffusion coefficient,and relative concentration distribution.The interphase behavior and microstructure were observed by fluorescence microscopy and scanning electron microscopy.In addition,a rutting experiment was used to verify the molecular dynamics simulation based on macroscopic performance.The results showed that after adding CNTs,the binding energy of the SBS and aromatics increased from 301.8343 to 327.1102 kcal/mol.The diffusion coefficient of the SBS and asphaltenes decreased more than 3.2×10-11 m2/s,and the correlation coefficients between the diffusion coefficient and the molecular weight,surface area and volume were all lower than 0.3.Relative concentration distribution curves indicated that CNTs promote the ability of SBS to swell.Microscopic observations demonstrated that the swelling ability of SBS was increased by CNTs.Overall,the interphase of SBSMA was improved by the additional reinforcement,swelling,and diffusion provided by CNTs.Finally,the rutting experiment found that no matter what the temperature,the rutting factor of CNT/SBSMA is higher than that of SBSMA,which corroborates the findings from the molecular dynamics simulations.
基金Funded by the National Natural Science Foundation of China(No.11162012)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2014MS0507)
文摘The microstructure and dynamic rheological characteristics of asphalt containing different polymer modifiers (crumb rubber, styrene-butadiene-styrene and crumb rubber mix with styrene- butadiene-styrene) at mid and high service temperature levels were investigated by using scanning electron microscopy(SEM), dynamic shear rheometer(DSR) and repeat creep test. The main objective of the investigation was to rank the modifiers based on their effect on performance characteristics of asphalt under service conditions. To evaluate the effect of different modifiers on the viscoelastic response of asphalt, the temperature and frequency dependences of the dynamic viscoelastic properties were compared. The mid-temperature fatigue resistance and high-temperature rutting resistance of three polymer modified asphalts were evaluated to predict their field performance in roads. Based on the current results, an improved rutting factor was proposed to determine the rutting resistance of asphalt pavements. In addition, the viscous stiffness (Gv), defined as the reciprocal of viscous compliance, was used to evaluate the high-temperature deformation resistance of asphalt mixtures. The experimental results indicate that the asphalt containing crumb rubber only shows superior performance at mid and high service temperatures in all three modified asphalt binders due to the action of the crumb rubber.
基金Projects(51838001,51878070,51908069)supported by the National Natural Science Foundation of China。
文摘In this paper,organic montmorillonite(OMMT)was added into crumb rubber modified asphalt(CRMA)to improve its high temperature performance,anti-aging performance and storage stability.The effects of different OMMT content on properties of CRMA were studied.The rutting factor obtained by dynamic shear rheological(DSR)test was adopted to evaluate the high-temperature performance.The creep stiffness and m value determined by the bending beam rheometer(BBR)test were employed to evaluate the low-temperature performance.The softening point,ductility,rutting factor before and after rolling thin film ovens test(RTFOT)and pressure aging vessel test(PAV)were compared to characterize the aging properties.Moreover,the segregation test after being reserved for 48 h and 7 d was conducted,and the softening point and rutting factor of upper and lower layers of segregation pipe were adopted to evaluate the storage stability.The results indicated that the high-temperature performance and anti-aging performance were developed with the increasing content of OMMT,while the low-temperature performance deteriorated.The storage stability was improved with the increasing content of OMMT before the content exceeded 4%,after which the storage stability declined.Taking account of all factors,it is suggested that the optimum content of OMMT is 3%−4%.
基金supported by the National Natural Science Foundation of China(51978070,51978072)Key Research and Development Plan Project of Shaanxi Province(2023-YBSF-110)the Fundamental Research Funds for the Central Universities,CHD(300102313206).
文摘Polyurethane(PU),with excellent physical and chemical properties and high designability,is one of the ideal materials for asphalt modification in the future.In this paper,based on the limitations of traditional asphalt modifiers,the preparation process,relative advantages and development prospects of PU as asphalt modifiers are described.Subsequently,the spatial structure,physical and chemical properties of PU synthetic raw materials were combined with the modification properties of PU to analyze the effect and influence of PU on asphalt modification.Specifically,polyurethane modified asphalt(PUMA)is divided into thermoplastic polyurethane modified asphalt(TP-PUMA)and thermosetting polyurethane modified asphalt(TS-PUMA).The gain effect of TPPUMA in high-temperature performance,low-temperature performance,aging resistance,fatigue resistance,weathering performance and bonding performance is obvious.In addition,it has good storage stability.With excellent road performance,TS-PUMA makes up for the shortcomings of epoxy asphalt in terms of lowtemperature performance and compatibility.Finally,due to the development trend of functional diversification of modified asphalt,the research basis and status of several new modified asphalts based on PU properties are described.Because the systematic study of PUMA is insufficient,this paper proposes corresponding research.To provide guidance and ideas for the research of PU modified asphalt.
基金Funded by Inner Mongolia Communication Technology Project (No.NJ-2005-25)
文摘Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30 mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution of crumb rubber particles in asphalt. The SEM pictures reveal that the crumb rubber particles distribute evenly in the asphalt and they are compatible well with asphalt. The shear creep test of crumb rubber modified asphalt was carried out at -10 ℃ and 40 ℃ by Dynamic Shear Rheology (DSR). The shearing deformation at different temperature and creep stiffness modulus curve at loading stage of crumb rubber modified asphalt have been measured. The stiffness modulus of crumb rubber modified asphalt is much temperature sensitive and it decays much quick at the early stage of loading than normal asphalt. The rate of decay of stiffness modulus is slow at the subsequent stage and stiffness modulus approaches to a stable value at the final stage at a higher temperature. In addition, Burgers model is suitable to describe and simulate experimental results of viscoelastic properties of the crumb rubber modified asphalt.
基金supported by Innovation Capability Support Program of Shaanxi(2022TD-07).
文摘With the rapid development of asphalt pavement technology,it has attracted considerable attention to improving the durability of asphalt pavement.An effective action is to use modified asphalt with high performance and durability.Polyurethane(PU)has been used in asphalt pavement engineering to enhance the durability and service life of asphalt pavement because of its excellent high-temperature performance,toughness,wear resistance,aging resistance and oil resistance.However,PU modified asphalt technology is still in the exploratory stage.The preparation,modification mechanism and working performances of PU modified asphalt need to be further clarified.Therefore,this paper summarized the research progress of PU modified asphalt and its mixture.The composition of PU modified asphalt was introduced.The addition methods of PU materials and preparation process parameters of the PU modified asphalt were determined.The modification mechanism of PU on asphalt was discussed.The effects of polyurethane on asphalt were analyzed and the road performances of its mixture were evaluated.Finally,the development tendency towards PU modified asphalt and its mixture were forecasted.
文摘The phenomenon of cyclic hardening is observed in fatigue tests of modified asphalt controlled by low strain/stress level and it is not clear how the phenomenon affects the fatigue properties of binders. The special time weep tests were performed to investigate the point. Tests results indicate that the cyclic hardening is caused by the rearrangement of molecules in binders, and it can make the inner structure of binders getting stable and increase the fatigue properties of asphalt binders. But fatigue damage occurs when fatigue tests start, no matter the phenomenon of cyclic hardening happens or not. If the controlled load is low, the effect of rearrangement of molecules on material is beyond the effect of fatigue damage so that the cyclic hardening can be observed. When the load conditions get worse, the effect of slight fatigue damages produced in hardening stage will show.
文摘Waste rubber-modified asphalt has good anti-aging properties and can significantly improve the service life of asphalt pavements. For domestic and foreign scholars of rubber modified asphalt thermal oxygen aging, photo-oxidative aging and water aging some behavioural research, and rubber asphalt aging after the characteristics of the research progress are reviewed. Especially rubber-modified asphalt after light, water and other multi-factor agingsituations, the aging situation is more serious, for rubber-modified asphalt mixture aging, rubber asphalt anti-aging process research and analysis means are still very few, the future research must have more thinking.
文摘The article expounds modified asphalt technology by introducing commonly used modifiers and fillers and analyzing the construction technology of modified asphalt.The use of modified asphalt in municipal roads provides new alternatives for asphalt pavement materials,but also solves the existing construction problems and reduces project costs.Therefore,the research and application of modified asphalt using new materials and new processes is a crucial aspect in road construction.
基金supported by the Scientific and Technological Project in Shaanxi Province(2022KW-37)。
文摘Traditional pavement is prone to cracks,and other distresses in cold regions.In this case,asphalt modification is a common technique used to improve the performance of asphalt.This study attempts to compare the low temperature properties of three modified asphalts.For this purpose,the addition of crumb rubber(CR),modified crumb rubber(MCR),and styrene-butadiene-styrene(SBS)to the base asphalt,respectively,and CR modified asphalt,MCR modified asphalt,and SBS modified asphalt is firstly prepared.Then,the asphalt specimens are subjected to a thin film oven test(TFOT)and pressurized aging vessel(PAV)test.The bending beam rheometer(BBR)test is conducted to compare the rheology characteristics and anti-aging performance of three modified asphalts.Furthermore,the low temperature performance of three modified asphalts is compared by three approaches based on the performance grade(PG),critical low temperature,and Burgers model.The BBR results show that the CR modified asphalt has the best low temperature performance.However,the CR modified asphalt show poor aging resistance,SBS modified asphalt,and MCR modified asphalt have better aging resistance.In terms of the Burgers model,it is established to analyze the resistance to low temperature cracking of four asphalts from the perspective of viscoelastic properties.Different viscoelastic parameters indicate that the low temperature performance of CR modified asphalt is superior to the other asphalts,which is consistent with the result of the critical low temperatures.
基金supported by Hunan Provincial Natural Science Foundation(Grant No.2021JJ30709)Henan Provincial Transportation Association Research Project(Grant No.YJXHZD202401)+1 种基金Changsha Municipal Natural Science Foundation,project No.kq2007029Research Innovation Project for Post-graduate of Changsha University of Science&Technology,project No.CX2021SS05。
文摘The application of waste crumb rubber to modified asphalt can not only improve pavement performance,but also make full use of renewable resources,which is of great significance to environmental protection.However,the waste crumb rubber modified asphalt has some disadvantages such as poor storage stability,high viscosity and high construction temperature requirement,which restricts the application of crumb rubber modified asphalt in road engineering.In order to improve the storage stability and construction workability of waste crumb rubber modified asphalt,in this paper hydrogen peroxide is adopted for the surface oxidation treatment of waste crumb rubber,to prepare five kinds of hydrogen peroxide treated waste crumb rubber modified asphalt with waste crumb rubber dosage of15%,20%,25%,30%,and 35%(wt%).The pavement performance was studied by conventional performance tests and rheological properties tests.Then,the microscopic mechanism was studied by scanning electron microscopy,infrared spectroscopy and thermogravimetric analysis.The results show that the waste crumb rubber becomes fluffy and has a richer pore structure on the surface after hydrogen peroxide treatment,which makes it easier for the light components in the asphalt to penetrate into the waste crumb rubber,and thus promotes its dissolution in asphalt,thereby improving the storage stability,construction workability,and low temperature performance of waste crumb rubber modified asphalt,but reduces the high temperature and elastic properties.At the same time,the surface polarity of activated waste crumb rubber is enhanced,and esterification reaction occurs with carboxyl groups,sulfoxides and acid anhydrides in asphalt,which effectively increases the interface bonding between asphalt and the waste crumb rubber,and further improves the storage stability,construction workability and low temperature performance of the waste crumb rubber modified asphalt.The optimum dosage of waste crumb rubber modified asphalt treated with hydrogen peroxide is 30%.