In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] a...In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.展开更多
In this work,a modified weak Galerkin finite element method is proposed for solving second order linear parabolic singularly perturbed convection-diffusion equations.The key feature of the proposed method is to replac...In this work,a modified weak Galerkin finite element method is proposed for solving second order linear parabolic singularly perturbed convection-diffusion equations.The key feature of the proposed method is to replace the classical gradient and divergence operators by the modified weak gradient and modified divergence operators,respectively.We apply the backward finite difference method in time and the modified weak Galerkin finite element method in space on uniform mesh.The stability analyses are presented for both semi-discrete and fully-discrete modified weak Galerkin finite element methods.Optimal order of convergences are obtained in suitable norms.We have achieved the same accuracy with the weak Galerkin method while the degrees of freedom are reduced in our method.Various numerical examples are presented to support the theoretical results.It is theoretically and numerically shown that the method is quite stable.展开更多
An approximate analysis for free vibration of a laminated curved panel(shell)with four edges simply supported(SS2),is presented in this paper.The transverse shear deformation is considered by using a higher-order shea...An approximate analysis for free vibration of a laminated curved panel(shell)with four edges simply supported(SS2),is presented in this paper.The transverse shear deformation is considered by using a higher-order shear deformation theory.For solving the highly coupled partial differential governing equations and associated boundary conditions,a set of solution functions in the form of double trigonometric Fourier series,which are required to satisfy the geometry part of the considered boundary conditions,is assumed in advance.By applying the Galerkin procedure both to the governing equations and to the natural boundary conditions not satisfied by the assumed solution functions,an approximate solution,capable of providing a reliable prediction for the global response of the panel,is obtained.Numerical results of antisymmetric angle-ply as well as symmetric cross-ply and angle-ply laminated curved panels are presented and discussed.展开更多
In this paper,we derive a residual based a posteriori error estimator for a modified weak Galerkin formulation of second order elliptic problems.We prove that the error estimator used for interior penalty discontinuou...In this paper,we derive a residual based a posteriori error estimator for a modified weak Galerkin formulation of second order elliptic problems.We prove that the error estimator used for interior penalty discontinuous Galerkin methods still gives both upper and lower bounds for the modified weak Galerkin method,though they have essentially different bilinear forms.More precisely,we prove its reliability and efficiency for the actual error measured in the standard DG norm.We further provide an improved a priori error estimate under minimal regularity assumptions on the exact solution.Numerical results are presented to verify the theoretical analysis.展开更多
A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified w...A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified wavelet Galerkin method recently developed by the authors.Then,the classical fourth-order explicit Runge–Kutta method is employed to solve the resulting system of ordinary differential equations.Such a wavelet-based solution procedure has been justified by solving two test examples:results demonstrate that the proposed method has a much better accuracy and efficiency than many other existing numerical methods,and whose order of convergence can go up to 5.Most importantly,our results also indicate that the present wavelet method can readily deal with those fluid dynamics problems with high Reynolds numbers.展开更多
文摘In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.
基金supported in part by National Natural Science Foundation of China (No.11871038).
文摘In this work,a modified weak Galerkin finite element method is proposed for solving second order linear parabolic singularly perturbed convection-diffusion equations.The key feature of the proposed method is to replace the classical gradient and divergence operators by the modified weak gradient and modified divergence operators,respectively.We apply the backward finite difference method in time and the modified weak Galerkin finite element method in space on uniform mesh.The stability analyses are presented for both semi-discrete and fully-discrete modified weak Galerkin finite element methods.Optimal order of convergences are obtained in suitable norms.We have achieved the same accuracy with the weak Galerkin method while the degrees of freedom are reduced in our method.Various numerical examples are presented to support the theoretical results.It is theoretically and numerically shown that the method is quite stable.
文摘An approximate analysis for free vibration of a laminated curved panel(shell)with four edges simply supported(SS2),is presented in this paper.The transverse shear deformation is considered by using a higher-order shear deformation theory.For solving the highly coupled partial differential governing equations and associated boundary conditions,a set of solution functions in the form of double trigonometric Fourier series,which are required to satisfy the geometry part of the considered boundary conditions,is assumed in advance.By applying the Galerkin procedure both to the governing equations and to the natural boundary conditions not satisfied by the assumed solution functions,an approximate solution,capable of providing a reliable prediction for the global response of the panel,is obtained.Numerical results of antisymmetric angle-ply as well as symmetric cross-ply and angle-ply laminated curved panels are presented and discussed.
基金The first author was supported by Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2018A030307024 and 2020A1515011032)by National Natural Science Foundation of China(Grant No.11526097)+2 种基金The second author was supported by National Natural Science Foundation of China(Grant Nos.11871272 and 11871281)The third author was supported by National Natural Science Foundation of China(Grant No.11701197)The fourth author was supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2018A0303100016).
文摘In this paper,we derive a residual based a posteriori error estimator for a modified weak Galerkin formulation of second order elliptic problems.We prove that the error estimator used for interior penalty discontinuous Galerkin methods still gives both upper and lower bounds for the modified weak Galerkin method,though they have essentially different bilinear forms.More precisely,we prove its reliability and efficiency for the actual error measured in the standard DG norm.We further provide an improved a priori error estimate under minimal regularity assumptions on the exact solution.Numerical results are presented to verify the theoretical analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.11032006,11072094,and 11121202)the Ph.D.Program Foundation of Ministry of Education of China(Grant No.20100211110022)+2 种基金the National Key Project of Magneto-Constrained Fusion Energy Development Program(Grant No.2013GB110002)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2013-1)the Scholarship Award for Excellent Doctoral Student granted by the Lanzhou University
文摘A wavelet method is proposed to solve the Burgers’equation.Following this method,this nonlinear partial differential equation is first transformed into a system of ordinary differential equations using the modified wavelet Galerkin method recently developed by the authors.Then,the classical fourth-order explicit Runge–Kutta method is employed to solve the resulting system of ordinary differential equations.Such a wavelet-based solution procedure has been justified by solving two test examples:results demonstrate that the proposed method has a much better accuracy and efficiency than many other existing numerical methods,and whose order of convergence can go up to 5.Most importantly,our results also indicate that the present wavelet method can readily deal with those fluid dynamics problems with high Reynolds numbers.