Vinasse poses considerable environmental problems due to its complex composition of organic matter,minerals,and toxic compounds.If discharged into the environment without treatment,it can cause adverse impacts on ecos...Vinasse poses considerable environmental problems due to its complex composition of organic matter,minerals,and toxic compounds.If discharged into the environment without treatment,it can cause adverse impacts on ecosystems.This research investigated the effectiveness of an integrated treatment system involving an upflow anaerobic sludge blanket(UASB)reactor and the modified Bardenpho process(MBP)for purifying synthetic vinasse.The study lasted for 167 days,during which the integrated UASB-MBP system processed untreated synthetic vinasse with organic loading rates(OLR)ranging from 1.6 to 12.5 kgCOD/m3 day.The UASB-MBP system impressively achieved a COD removal efficiency of 99.41%.Removal efficiencies of approximately 98.14,99.91,and 99.63%were also achieved for total nitrogen(TN),total phosphorus(TP)and total ammonium(NH4+-N),respectively.The final discharge was 51.06 mg/L.The concentrations of NH4+-N and TN in the outflow of the settlement tank were 0.8-1.2 mg/L and 5.1-7.9 mg/L,respectively.Optimal performance was achieved when the HRT and nitrate recycle ratio were 15.5 h and 200%,respectively.The temperature was kept in the mesophilic range(33-35°C)during the experiments.These results underscores the potential of the integrated UASB reactor and modified Bardenpho process to provide an effective and eco-friendly approach for concurrent removal of COD and nutrients from vinasse treatment,offering broad prospects for implementation in wastewater treatment.展开更多
Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 1,January 2024,Page 186 https://doi.org/10.1007/s12613-023-2744-0 The original version of this article unfortunately contained thr...Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 1,January 2024,Page 186 https://doi.org/10.1007/s12613-023-2744-0 The original version of this article unfortunately contained three mistakes.The presentation of Fig.8 in original version was incorrect.The correct version is given below.展开更多
This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary la...This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.展开更多
A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al...A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al-3wt%Mg alloy. Through simulation and experiment, it is shown that the sloping angle of the plate greatly affects temperature and velocity distributions, and the temperature and velocity of the alloy at the exit of the sloping plate increase with the increase of the sloping angle. The alloy temperature decreases linearly from the pouring mouth to the exit. The alloy temperature at the exit increases obviously with the increase of pouring temperature. To prepare the semisolid Al-3wt%Mg alloy with good quality, the sloping angle θ=45° is reasonable, and the pouring temperature is suggested to be designed above 650-660℃ but under 700℃.展开更多
A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of...A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60% and 50%, respectively, with an inner recycling ratio of 100% under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L-1with a removal efficiency of 63% and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.展开更多
Fuel consumption in the COREX-3000 process run in Baosteel is currently higher than the design index. Therefore, mass and heat balance equations for the COREX process were established using the basic principles in- cl...Fuel consumption in the COREX-3000 process run in Baosteel is currently higher than the design index. Therefore, mass and heat balance equations for the COREX process were established using the basic principles in- cluded in the Rist operating diagram for blast furnace (BF) as a reference. Thermodynamic calculations were then used to modify the Rist operating diagram so that it was suitable for the COREX process. The modified Rist operating dia- gram was then applied for the evaluation of metallization rate (MR) and fuel structure to reduce the energy consump- tion in the COREX process. The modified Rist operating diagram for the shaft furnace (SF) provided a nearly ideal value for the restriction point W when the metallization rate was increased, while the point P on the operating line for the melter gasifier (MG) moved upward due to reduction in the heat required in hearth. The feasibility of reduc- ing the energy consumption during the COREX process by changing the fuel structure was also demonstrated.展开更多
A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning...A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), and diffuse reflection spectra(DRS) techniques.XRD results indicated that the CeO2 film coated on cenospheres was a face-centered cubic structure.SEM images confirmed that the CeO2 film was relatively compact.XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in CeO2 film coated on FACs substrate.The bandgap of the composite was narrower compared with the pure CeO2.The as-prepared material exhibited good photocatalytic activity for the decolorization of methylene blue(MB) under visible light irradiation, and the first-order reaction rate constant(k) of 0.0028 min–1 for CeO2/FACs composite was higher than 0.0015 min–1 of pure CeO2.The fact that they floated on water meant that CeO2/FACs composites were easily recovered from water by filtration after the reaction.The recycling test revealed that the composites were quite stable during the MB photocatalytic decolorization.The CeO2/ FACs catalyst was therefore promising for practical use in the degradation of pollutants or water cleanup.展开更多
Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussi...Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.展开更多
The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behav...The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters.展开更多
The aim of this work is to evaluate the feasibility of applying the technology of oxidation-reduction potential (ORP) control on the municipal wastewater treatment system for nitrogen and phosphorus removal. Meanwhi...The aim of this work is to evaluate the feasibility of applying the technology of oxidation-reduction potential (ORP) control on the municipal wastewater treatment system for nitrogen and phosphorus removal. Meanwhile the relation between the optimal ORP ( ORPopt ) and influent C/N ratio was evaluated, in which the influent chemical oxygen demand ( COD ) concentration was stabilized at (290 ± 10 ) mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0 ± 0.5 ) mg/L. The results indicated that: (1) the ORP in the second anoxic zone had effect on nitrogen and phosphorus removal capability, and the average percentages of phosphorus uptake in ANO2 zone ( ηa ) increased with increasing ORP, i. e. , increasing from 12. 0% at - 143 mV to 22.0%,30.0%,37.0%, and45.0% at -123, -111, -105 and -95 mV, respectively; (2) the ORPopt as function of influent C/N ratio could be calculated by the equation: y ffi 252. 73e〈 -x/3.39) _ 131.01 ; the maximum percentage of phosphorus uptake in ANO2 as function of the ORPopt could be calculated by the equation: y ffi -0.49e(x/15.58) + 1. 51. The ORPopt was the important process control parameter that must be optimized for operation of enhanced biological phosphorus removal ( EBPR ) system. Moreover, ORP sensor is very simple, and the industrial applications of this strategy is practical.展开更多
To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy u...To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy under different conditions are obtained and the flow stress increases with ascending strain rate and descending temperature.For Arrhenius constitutive equation,each material parameter is set as a constant,which will bring forth large error for predicting flow behavior.In this work,material parameters are fitted as a function of temperature or strain rate based on experimental results and a modified constitutive equation is established for more accurate prediction of flow behavior of 7055 aluminium alloy.The effects of temperature and strain rate on power dissipation and instability are analyzed to establish a processing map of 7055 aluminium alloy.The dominant deformation mechanism for microstructure evolution at different deformation conditions can be determined and high efficiency of power dissipation may be achieved from power dissipation map.Meanwhile,proper processing parameters to avoid flow instability can be easily acquired in instability map.According to the processing map,optimized processing parameters of 7055 aluminium alloy are temperature of 673?723 K and strain rate of 0.01?0.4 s^?1,during which its efficiency of power dissipation is over 30%.Finite element method(FEM)is used to obtain optimized parameter in hot rolling process on the basis of processing map.展开更多
With the service environment becoming more and more severe, WC-Co coatings are required to apply in high temperature wear condition. In the present study, the sliding wear tests of CeO_2 modified WC-12 Co coatings wer...With the service environment becoming more and more severe, WC-Co coatings are required to apply in high temperature wear condition. In the present study, the sliding wear tests of CeO_2 modified WC-12 Co coatings were conducted at temperature of 450, 550 and 650 ℃. The wear loss and friction coefficient were recorded. The morphologies of wear tracks were observed every 1 h to investigate the dynamic wear mechanisms. The results show that the volume wear loss decreases with temperature increasing.The lowest volume wear loss is obtained at the temperature of 650 ℃ due to oxide films generated in the process of wearing. The wear mechanism is different at the temperature of 450, 550 and 650 0 C. Micro cutting wear, abrasive wear and oxidation wear dominate the wear mechanism at 450, 550 and 650 ℃,respectively. Abrasive wear and oxidation wear are the wear mechanisms at various temperatures.展开更多
A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of ...A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min, dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.展开更多
The attractive utilization route for one-step catalytic oxidation of dimethyl ether to dimethoxymethane was successfully carried out over the H3PW12O40(40%)/SiO2 catalyst, modified by Cs, K, Ni, and V. The Cs modifi...The attractive utilization route for one-step catalytic oxidation of dimethyl ether to dimethoxymethane was successfully carried out over the H3PW12O40(40%)/SiO2 catalyst, modified by Cs, K, Ni, and V. The Cs modification of H3PW12O40(40%)/SiO2 gave the most promising result of 20% dimethyl ether conversion and 34.8% dimethoxymethane selectivity. Dimethoxymethane could be synthe- sized via methoxy groups decomposed from dimethyl ether through the synergistic effect between the acid sites and the redox sites of Cs modified H3PW12O40(40%)/SiO2.展开更多
Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3...Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3 was prepared by phase inversion method. The physicochemical properties were studied by SEM, FT-IR, XRD, TG and electrochemical methods. The results of FT-IR indicated that the nano-La2O3 was successfully modified with vinyltrimethoxylsilane. The XRD analysis showed that the incorporation of modified nano-La2O3 into the polymer electrolyte membranes could effectively reduce the crystallinity of PVDF-HFP, and the characterizations also suggested that thermal stability and electrochemical stability window could reach to 382°C and 5.1V, respectively; the reciprocal temperature dependence of ionic conductivity followed Vogel-Tamman-Fulcher (VTF) relation, ionic conductivity at room temperature was up to 3.5×10-3S/cm and lithium ions transference number was up to 0.42; the interfacial resistance increased at initial value about353Ω/cm2 and reached a steady value about 559Ω/cm2 after 5d storage at 30°C. The fabricated Li/As-prepared electrolytes/LiCoO2 coin cell showed excellent rate and cycle performances.展开更多
文摘Vinasse poses considerable environmental problems due to its complex composition of organic matter,minerals,and toxic compounds.If discharged into the environment without treatment,it can cause adverse impacts on ecosystems.This research investigated the effectiveness of an integrated treatment system involving an upflow anaerobic sludge blanket(UASB)reactor and the modified Bardenpho process(MBP)for purifying synthetic vinasse.The study lasted for 167 days,during which the integrated UASB-MBP system processed untreated synthetic vinasse with organic loading rates(OLR)ranging from 1.6 to 12.5 kgCOD/m3 day.The UASB-MBP system impressively achieved a COD removal efficiency of 99.41%.Removal efficiencies of approximately 98.14,99.91,and 99.63%were also achieved for total nitrogen(TN),total phosphorus(TP)and total ammonium(NH4+-N),respectively.The final discharge was 51.06 mg/L.The concentrations of NH4+-N and TN in the outflow of the settlement tank were 0.8-1.2 mg/L and 5.1-7.9 mg/L,respectively.Optimal performance was achieved when the HRT and nitrate recycle ratio were 15.5 h and 200%,respectively.The temperature was kept in the mesophilic range(33-35°C)during the experiments.These results underscores the potential of the integrated UASB reactor and modified Bardenpho process to provide an effective and eco-friendly approach for concurrent removal of COD and nutrients from vinasse treatment,offering broad prospects for implementation in wastewater treatment.
文摘Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 1,January 2024,Page 186 https://doi.org/10.1007/s12613-023-2744-0 The original version of this article unfortunately contained three mistakes.The presentation of Fig.8 in original version was incorrect.The correct version is given below.
基金supported by the National Natural Science Foundation of China (Grant No.40275004)the State Key Laboratory of Atmosphere Physics and Chemistry,and the City University of Hong Kong(Grant No.8780046)the City University of Hong Kong Strategic Research(Grant No.7001038)
文摘This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.
基金This work was financially supported by the National Natural Science Foundation of China (No.50604007)the Natural ScienceFoundation of Liaoning Province, China (No.20062016)
文摘A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al-3wt%Mg alloy. Through simulation and experiment, it is shown that the sloping angle of the plate greatly affects temperature and velocity distributions, and the temperature and velocity of the alloy at the exit of the sloping plate increase with the increase of the sloping angle. The alloy temperature decreases linearly from the pouring mouth to the exit. The alloy temperature at the exit increases obviously with the increase of pouring temperature. To prepare the semisolid Al-3wt%Mg alloy with good quality, the sloping angle θ=45° is reasonable, and the pouring temperature is suggested to be designed above 650-660℃ but under 700℃.
基金Supported by the Major Science and Technology Program for Water Pollution Contro and Treatment-Crucial Technology Research and Engineering Sample Subject on Municipa Wastewater Treatment Process Updated to Higher Drainage Standard(2008ZX07317-02)Wuhan Water Pollution Control and the Water Environment Administer Technology and Synthetic Sample Project in Cities and Towns(2008ZX07317)
文摘A pilot-scale modified carbon source division anaerobic anoxic oxic(AAO) process with pre-concentration of returned activated sludge(RAS) was proposed in this study for the enhanced biological nutrient removal(BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60% and 50%, respectively, with an inner recycling ratio of 100% under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L-1with a removal efficiency of 63% and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.
基金Item Sponsored by National Natural Science Foundation of China(50934007,50874129)National High-tech Research and Development Program of China(2009AA06Z105)+1 种基金Special Research Foundation of Young Teachers of University of Science and Technology Liaoning of China(2014QN30)Foundation of Liaoning Educational Committee of China(L2015264)
文摘Fuel consumption in the COREX-3000 process run in Baosteel is currently higher than the design index. Therefore, mass and heat balance equations for the COREX process were established using the basic principles in- cluded in the Rist operating diagram for blast furnace (BF) as a reference. Thermodynamic calculations were then used to modify the Rist operating diagram so that it was suitable for the COREX process. The modified Rist operating dia- gram was then applied for the evaluation of metallization rate (MR) and fuel structure to reduce the energy consump- tion in the COREX process. The modified Rist operating diagram for the shaft furnace (SF) provided a nearly ideal value for the restriction point W when the metallization rate was increased, while the point P on the operating line for the melter gasifier (MG) moved upward due to reduction in the heat required in hearth. The feasibility of reduc- ing the energy consumption during the COREX process by changing the fuel structure was also demonstrated.
基金Project supported by National Natural Science Foundation of China(51308282)the China Postdoctoral Science Foundation Funded Project(2012M511254)the Natural Science Research Project of Jiangsu Province’s Education Department(12KJD610004)
文摘A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), and diffuse reflection spectra(DRS) techniques.XRD results indicated that the CeO2 film coated on cenospheres was a face-centered cubic structure.SEM images confirmed that the CeO2 film was relatively compact.XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in CeO2 film coated on FACs substrate.The bandgap of the composite was narrower compared with the pure CeO2.The as-prepared material exhibited good photocatalytic activity for the decolorization of methylene blue(MB) under visible light irradiation, and the first-order reaction rate constant(k) of 0.0028 min–1 for CeO2/FACs composite was higher than 0.0015 min–1 of pure CeO2.The fact that they floated on water meant that CeO2/FACs composites were easily recovered from water by filtration after the reaction.The recycling test revealed that the composites were quite stable during the MB photocatalytic decolorization.The CeO2/ FACs catalyst was therefore promising for practical use in the degradation of pollutants or water cleanup.
基金Supported by the National Natural Science Foundation of China(61273167)
文摘Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.
基金China National Science and Technology Major Project(Grant No.2017-VI-0004-0075).
文摘The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters.
基金National Natural Science Foundation of China(NSFC)(No.50978118)
文摘The aim of this work is to evaluate the feasibility of applying the technology of oxidation-reduction potential (ORP) control on the municipal wastewater treatment system for nitrogen and phosphorus removal. Meanwhile the relation between the optimal ORP ( ORPopt ) and influent C/N ratio was evaluated, in which the influent chemical oxygen demand ( COD ) concentration was stabilized at (290 ± 10 ) mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0 ± 0.5 ) mg/L. The results indicated that: (1) the ORP in the second anoxic zone had effect on nitrogen and phosphorus removal capability, and the average percentages of phosphorus uptake in ANO2 zone ( ηa ) increased with increasing ORP, i. e. , increasing from 12. 0% at - 143 mV to 22.0%,30.0%,37.0%, and45.0% at -123, -111, -105 and -95 mV, respectively; (2) the ORPopt as function of influent C/N ratio could be calculated by the equation: y ffi 252. 73e〈 -x/3.39) _ 131.01 ; the maximum percentage of phosphorus uptake in ANO2 as function of the ORPopt could be calculated by the equation: y ffi -0.49e(x/15.58) + 1. 51. The ORPopt was the important process control parameter that must be optimized for operation of enhanced biological phosphorus removal ( EBPR ) system. Moreover, ORP sensor is very simple, and the industrial applications of this strategy is practical.
基金Project(51175257)supported by National Natural Science Foundation of ChinaProject(BK20170785)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(BE2016179)supported by Science and Technology Planning Project of Jiangsu Province,ChinaProject(Kfkt2017-08)supported by Open Research Fund of State Key Laboratory for High Performance Complex Manufacturing,Central South University,China
文摘To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy under different conditions are obtained and the flow stress increases with ascending strain rate and descending temperature.For Arrhenius constitutive equation,each material parameter is set as a constant,which will bring forth large error for predicting flow behavior.In this work,material parameters are fitted as a function of temperature or strain rate based on experimental results and a modified constitutive equation is established for more accurate prediction of flow behavior of 7055 aluminium alloy.The effects of temperature and strain rate on power dissipation and instability are analyzed to establish a processing map of 7055 aluminium alloy.The dominant deformation mechanism for microstructure evolution at different deformation conditions can be determined and high efficiency of power dissipation may be achieved from power dissipation map.Meanwhile,proper processing parameters to avoid flow instability can be easily acquired in instability map.According to the processing map,optimized processing parameters of 7055 aluminium alloy are temperature of 673?723 K and strain rate of 0.01?0.4 s^?1,during which its efficiency of power dissipation is over 30%.Finite element method(FEM)is used to obtain optimized parameter in hot rolling process on the basis of processing map.
基金Project supported by National Natural Science Foundation of China(51505393)the National Key Research and Development Program of China(2017YFB0305905)
文摘With the service environment becoming more and more severe, WC-Co coatings are required to apply in high temperature wear condition. In the present study, the sliding wear tests of CeO_2 modified WC-12 Co coatings were conducted at temperature of 450, 550 and 650 ℃. The wear loss and friction coefficient were recorded. The morphologies of wear tracks were observed every 1 h to investigate the dynamic wear mechanisms. The results show that the volume wear loss decreases with temperature increasing.The lowest volume wear loss is obtained at the temperature of 650 ℃ due to oxide films generated in the process of wearing. The wear mechanism is different at the temperature of 450, 550 and 650 0 C. Micro cutting wear, abrasive wear and oxidation wear dominate the wear mechanism at 450, 550 and 650 ℃,respectively. Abrasive wear and oxidation wear are the wear mechanisms at various temperatures.
文摘A new technique for preparing TiO2 modified film on carbon steel was accomplished by electroless plating and sol-gel composite process. The artificial neural network was applied to optimize the preparing condition of TiO2 modified film. The optimized condition for forming TiO2 modified film on carbon steel was that NiP plating for 50 min, dip-coating times as 4, heat treatment time for 2 h, and the molar ratio of complexing agent and Ti(OC4HZ9)4 kept 1.5:1. The results showed that TiO2 modified film have good corrosion resistance. The result conformed that it is feasible to design the preparing conditions of TiO2 modified film by artificial neural network.
基金Foundation items:the National Natural Science Foundation of China(No.20373085)the Natural Science Foundation of Shanxi Province(No.20051023)
文摘The attractive utilization route for one-step catalytic oxidation of dimethyl ether to dimethoxymethane was successfully carried out over the H3PW12O40(40%)/SiO2 catalyst, modified by Cs, K, Ni, and V. The Cs modification of H3PW12O40(40%)/SiO2 gave the most promising result of 20% dimethyl ether conversion and 34.8% dimethoxymethane selectivity. Dimethoxymethane could be synthe- sized via methoxy groups decomposed from dimethyl ether through the synergistic effect between the acid sites and the redox sites of Cs modified H3PW12O40(40%)/SiO2.
基金Project supported by Major Provincial Science and Technology Programs of Hunan (2011FJ1005)Central College on the 2010 Operational Costs of Basic Research Project (2010QZZD0101)
文摘Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3 was prepared by phase inversion method. The physicochemical properties were studied by SEM, FT-IR, XRD, TG and electrochemical methods. The results of FT-IR indicated that the nano-La2O3 was successfully modified with vinyltrimethoxylsilane. The XRD analysis showed that the incorporation of modified nano-La2O3 into the polymer electrolyte membranes could effectively reduce the crystallinity of PVDF-HFP, and the characterizations also suggested that thermal stability and electrochemical stability window could reach to 382°C and 5.1V, respectively; the reciprocal temperature dependence of ionic conductivity followed Vogel-Tamman-Fulcher (VTF) relation, ionic conductivity at room temperature was up to 3.5×10-3S/cm and lithium ions transference number was up to 0.42; the interfacial resistance increased at initial value about353Ω/cm2 and reached a steady value about 559Ω/cm2 after 5d storage at 30°C. The fabricated Li/As-prepared electrolytes/LiCoO2 coin cell showed excellent rate and cycle performances.