The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose s...The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose significant challenges for battery development.These conditions drive the need for specialized designs in deep-sea batteries,incorporating critical aspects of power generation,protection,distribution,and management.Over time,deep-sea battery technology has evolved through multiple generations,with lithium(Li)batteries emerging in recent decades as the preferred power source due to their high energy and reduced operational risks.Although the rapid progress of Li batteries has notably advanced the capabilities of underwater vehicles,critical technical issues remain unresolved.This review first systematically presents the whole picture of deep-sea battery manufacturing,focusing on Li batteries as the current mainstream solution for underwater power.It examines the key aspects of deep-sea Li battery development,including materials selection informed by electro-chemo-mechanics models,component modification and testing,and battery management systems specialized in software and hardware.Finally,it discusses the main challenges limiting the utilization of deep-sea batteries and outlines promising directions for future development.Based on the systematic reflection on deep-sea batteries and discussion on deep-sea Li batteries,this review aims to provide a research foundation for developing underwater power tailored for extreme environmental exploration.展开更多
An accurate and reliable turbofan engine model which can describe its dynamic behavior within the full flight envelop and lifecycle plays a critical role in performance optimization, controller design and fault diagno...An accurate and reliable turbofan engine model which can describe its dynamic behavior within the full flight envelop and lifecycle plays a critical role in performance optimization, controller design and fault diagnosis. However, due to the performance differences caused by the tolerance of engine manufacturing and assembly, and performance degradation during continuously stringent environmental regulations, the model accuracy is severely reduced. In this paper, an adaptive modification method of turbofan engine nonlinear Component-Llevel Model(CLM) based on Long Short-Term Memory(LSTM) Neural Network(NN) and hybrid optimization algorithm is pro-posed. First, a dynamic compensator with a combined LSTM NN architecture is constructed to compensate for the initial error between the experimental data and CLM of a turbofan engine under health condition. Then, a sensitivity analysis approach based on the entropy coefficient and technique for order preference by similarity to an ideal solution integrated evaluation is developed to choose the unmeasurable health parameters to be adjusted. Finally, a parallel hybrid optimization algorithm is developed to complete the adaptive model modification when the performance degrades. The proposed method is verified on a military low-bypass twin-spool turbofan engine, and the experimental results show the effectiveness of the proposed method.展开更多
The CET 4 writing test is widely used in China,but whether it is a more reliable and valid test ofwriting for CET 4 than other methods of evaluation is still not clear.The purpose of this study was to examine the reli...The CET 4 writing test is widely used in China,but whether it is a more reliable and valid test ofwriting for CET 4 than other methods of evaluation is still not clear.The purpose of this study was to examine the reliability and the validity of a modification of this test.In carrying out the study,a total of 60 Band 4 students in Zhejiang University took the modified test,aCET 4 test and a First Certificate Practice Test.The results of this study demonstrate that themodified version is a significantly more reliable and valid writing test than the present CET 4 writingtest.These results suggest that the CET 4 writing test needs modification.展开更多
基金support provided by National Key Research and Development Program of China(2023YFE0203000 and 2016YFC0300200)the NSAF(Grant No.U2330205)+3 种基金Full-Sea-Depth Battery Project(2020-XXXX-XX-246-00)Open project of Shaanxi Laboratory of Aerospace Power(2022ZY2-JCYJ-01-09)Fundamental Research Funds for the Central Universities,ND Basic Research Funds(G2022WD)the Innovation Team of Shaanxi Province。
文摘The operation of deep-sea underwater vehicles relies entirely on onboard batteries.However,the extreme deep-sea conditions,characterized by ultrahigh hydraulic pressure,low temperature,and seawater conductivity,pose significant challenges for battery development.These conditions drive the need for specialized designs in deep-sea batteries,incorporating critical aspects of power generation,protection,distribution,and management.Over time,deep-sea battery technology has evolved through multiple generations,with lithium(Li)batteries emerging in recent decades as the preferred power source due to their high energy and reduced operational risks.Although the rapid progress of Li batteries has notably advanced the capabilities of underwater vehicles,critical technical issues remain unresolved.This review first systematically presents the whole picture of deep-sea battery manufacturing,focusing on Li batteries as the current mainstream solution for underwater power.It examines the key aspects of deep-sea Li battery development,including materials selection informed by electro-chemo-mechanics models,component modification and testing,and battery management systems specialized in software and hardware.Finally,it discusses the main challenges limiting the utilization of deep-sea batteries and outlines promising directions for future development.Based on the systematic reflection on deep-sea batteries and discussion on deep-sea Li batteries,this review aims to provide a research foundation for developing underwater power tailored for extreme environmental exploration.
基金co-supported by the National Natural Science Foundation of China(Nos.61903061,61903059 and 61890925)Natural Science Foundation of Liaoning Province,China(No.2020-MS-098)+1 种基金Aeronautical Science Foundation of China(No.20200013063001)the Fundamental Research Funds for the Central Universities,China(No.DUT20JC22)。
文摘An accurate and reliable turbofan engine model which can describe its dynamic behavior within the full flight envelop and lifecycle plays a critical role in performance optimization, controller design and fault diagnosis. However, due to the performance differences caused by the tolerance of engine manufacturing and assembly, and performance degradation during continuously stringent environmental regulations, the model accuracy is severely reduced. In this paper, an adaptive modification method of turbofan engine nonlinear Component-Llevel Model(CLM) based on Long Short-Term Memory(LSTM) Neural Network(NN) and hybrid optimization algorithm is pro-posed. First, a dynamic compensator with a combined LSTM NN architecture is constructed to compensate for the initial error between the experimental data and CLM of a turbofan engine under health condition. Then, a sensitivity analysis approach based on the entropy coefficient and technique for order preference by similarity to an ideal solution integrated evaluation is developed to choose the unmeasurable health parameters to be adjusted. Finally, a parallel hybrid optimization algorithm is developed to complete the adaptive model modification when the performance degrades. The proposed method is verified on a military low-bypass twin-spool turbofan engine, and the experimental results show the effectiveness of the proposed method.
文摘The CET 4 writing test is widely used in China,but whether it is a more reliable and valid test ofwriting for CET 4 than other methods of evaluation is still not clear.The purpose of this study was to examine the reliability and the validity of a modification of this test.In carrying out the study,a total of 60 Band 4 students in Zhejiang University took the modified test,aCET 4 test and a First Certificate Practice Test.The results of this study demonstrate that themodified version is a significantly more reliable and valid writing test than the present CET 4 writingtest.These results suggest that the CET 4 writing test needs modification.