期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
Towards the creation of an inverse electron distribution function in two-chamber inductively coupled plasma discharges
1
作者 Ying WANG Nie CHEN +4 位作者 Jingfeng YAO Evgeniy BOGDANOV Anatoly KUDRYAVTSEV Chengxun YUAN Zhongxiang ZHOU 《Plasma Science and Technology》 2025年第5期122-128,共7页
This work continues the studies on searching for plasma media with the inverse electron energy distribution function(EEDF)and providing recommendations for setting up subsequent experiments.The inverse EEDF is a distr... This work continues the studies on searching for plasma media with the inverse electron energy distribution function(EEDF)and providing recommendations for setting up subsequent experiments.The inverse EEDF is a distribution function that increases with an increase in energy at zero electron energy.The inverse EEDF plays a central role in the problem of negative conductivity.Based on the previously obtained criterion for the formation of an inverse EEDF in a spatially inhomogeneous plasma,a heuristic method is proposed that allows one to avoid resource-intensive calculations for spatially two-dimensional(2D)kinetic modeling on a large array of different glow discharges.It is shown that the conditions for EEDF inversion can be realized in two-chamber discharge structures due to violating the known Boltzmann distribution for electron density.The theoretical conclusions are validated by numerical modeling of lowpressure two-chamber inductively-coupled plasma(ICP)discharges in the COMSOL Multiphysics environment.As a result,areas of conditions with inverse EEDF were found for subsequent detailed kinetic analysis and experimental studies. 展开更多
关键词 electron kinetics nonlocal electron distribution function gas discharge Boltzmann kinetic equation inverse electron distribution function inductively coupled plasma
在线阅读 下载PDF
Approximating the Radial Distribution Function of the Electron in a Hydrogen Atom by a Normal Distribution Suggests That Magnetic Confinement Fusion Would Be Less Energy Efficient than Inertial Confinement Fusion
2
作者 Motohisa Osaka 《Applied Mathematics》 2024年第9期585-593,共9页
Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the s... Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the single electron in 1s orbit is expressed as φ2, a function of distance from the nucleus. However, the probability of existence of the electron is expressed as a radial distribution function at an arbitrary distance from the nucleus, so it is estimated as the probability of the entire spherical shape of that radius. In this study, it has been found that the electron existence probability approximates the radial distribution function by assuming that the probability of existence of the electron being in the vicinity of the nucleus follows a normal distribution for arbitrary x-, y-, and z-axis directions. This implies that the probability of existence of the electron, which has been known only from the distance information, would follow a normal distribution independently in the three directions. When the electrons’ motion is extremely restricted in a certain direction by the magnetic field of both tokamak and helical fusion reactors, the probability of existence of the electron increases with proximity to the nucleus, and as a result, it is less likely to be liberated from the nucleus. Therefore, more and more energy is required to free the nucleus from the electron in order to generate plasma. 展开更多
关键词 electron Cloud Radial distribution function Nuclear Fusion TOKAMAK Laser
在线阅读 下载PDF
Effect of parallel resonance on the electron energy distribution function in a 60 MHz capacitively coupled plasma 被引量:1
3
作者 You HE Yeong-Min LIM +3 位作者 Jun-Ho LEE Ju-Ho KIM Moo-Young LEE Chin-Wook CHUNG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期69-78,共10页
In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit ... In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively. 展开更多
关键词 capacitively coupled plasma parallel resonance electron energy distribution function
在线阅读 下载PDF
The Influence of Magnetic Turbulence on the Electron Distribution Function in LHCD Plasma
4
作者 焦一鸣 周艳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第4期339-341,共3页
A conservative transport operator in space (v//,r) and moment equations are used to describe the combined effects of a stochastic magnetic field and a radial ambipolar electric field on the electrons. The transport o... A conservative transport operator in space (v//,r) and moment equations are used to describe the combined effects of a stochastic magnetic field and a radial ambipolar electric field on the electrons. The transport operator is coupled with Fokker-planck and Ohmic heating terms to compute the electron distribution function. A physical picture exhibits the possible importance of the turbulent magnetic field on the suprathermal electrons, which may be concerned with plasma confinement. 展开更多
关键词 In the Influence of Magnetic Turbulence on the electron distribution function in LHCD Plasma
在线阅读 下载PDF
Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures
5
作者 Wenqi Lv Weili Li +1 位作者 Wei Ji Yanning Zhang 《Chinese Physics B》 2025年第6期512-516,共5页
Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is... Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional(1D)-TM_(6)Te_(6) nanowires to form TM_(6)Te_(6)@CNT-(16,0) 1D van der Waals heterostructures(1D-vd WHs). The systematic first-principles studies on the electronic properties of 1D-vd WHs show that N-type doping CNTs can be formed by charge transfer from TM_(6)Te_(6) nanowires to CNTs, without introducing additional carrier scattering.Particularly, contribution from both T M(e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp^(3) hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices. 展开更多
关键词 electronic modification of CNTs one-dimensional(1D)vdW heterostructures inner doping density functional theory
原文传递
Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields
6
作者 Hirotake SUGAWARA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第9期1-18,共18页
This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic f... This paper presents a self-contained description on the configuration of propagator method(PM)to calculate the electron velocity distribution function(EVDF) of electron swarms in gases under DC electric and magnetic fields crossed at a right angle. Velocity space is divided into cells with respect to three polar coordinates v,θ and f. The number of electrons in each cell is stored in three-dimensional arrays. The changes of electron velocity due to acceleration by the electric and magnetic fields and scattering by gas molecules are treated as intercellular electron transfers on the basis of the Boltzmann equation and are represented using operators called the propagators or Green’s functions. The collision propagator, assuming isotropic scattering, is basically unchanged from conventional PMs performed under electric fields without magnetic fields. On the other hand, the acceleration propagator is customized for rotational acceleration under the action of the Lorentz force. The acceleration propagator specific to the present cell configuration is analytically derived. The mean electron energy and average electron velocity vector in a model gas and SF6 were derived from the EVDF as a demonstration of the PM under the Hall deflection and they were in a fine agreement with those obtained by Monte Carlo simulations. A strategy for fast relaxation is discussed, and extension of the PM for the EVDF under AC electric and DC/AC magnetic fields is outlined as well. 展开更多
关键词 PROPAGATOR method electron velocity distribution function electron transport COEFFICIENTS CROSSED electric and magnetic fields MAGNETIZED plasma BOLTZMANN equation
在线阅读 下载PDF
Effect on Landau damping rates for a non-Maxwellian distribution function consisting of two electron populations
7
作者 M.N.S.Qureshi S.Sehar +1 位作者 H.A.Shah J.B.Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期358-365,共8页
In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold p... In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold population and a small hot population.Presence of such low-density electron distributions can alter the wave damping rate.A kinetic model is employed to study the Landau damping of Langmuir waves when a small hot electron population is present in the dense cold electron population with non-Maxwellian distribution functions.Departure of plasma from Maxwellian distributions significantly alters the damping rates as compared to the Maxwellian plasma.Strong damping is found for highly nonMaxwellian distributions as well as plasmas with a higher density and hot electron population.Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian.These results may be applied in both experimental and space physics regimes. 展开更多
关键词 Landau damping Langmuir waves two electron populations non-Maxwellian distribution function
原文传递
Analysis of electron energy distribution function in a magnetically filtered complex plasma
8
作者 M K Deka H Bailung N C Adhikary 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期324-329,共6页
The electron energy distribution function (EEDF) for a magnetically filtered dusty plasma is studied in a dusty double plasma device where the electron energy can be varied from 0.15 eV to ~ 2.8 eV and plasma densi... The electron energy distribution function (EEDF) for a magnetically filtered dusty plasma is studied in a dusty double plasma device where the electron energy can be varied from 0.15 eV to ~ 2.8 eV and plasma density from 10 6 cm-3 to 10 9cm-3 . The characteristics of EEDF for these ranges of plasma parameters are investigated in a pristine plasma as well as in a dusty plasma. The results show that in the presence of dust, there is a drastic modification in EEDF patterns in a plasma with higher electron temperature and density than those in a low temperature and low density plasma produced by the magnetic filter. 展开更多
关键词 dusty plasma magnetic filter electron energy distribution function
原文传递
Studies of Electron Energy Distribution Function (EEDF) in Lithium Vapor Excitation at 2S→3D Two-Photon Resonance
9
作者 Mohamed A. Mahmoud Kholoud A. Hamam 《Optics and Photonics Journal》 2014年第8期195-212,共18页
We have developed a computational model which quantitatively studies the Electron Energy Distribution Function (EEDF) in laser excited lithium vapor at 2s→3d two-photon resonance. A kinetic model has been constructed... We have developed a computational model which quantitatively studies the Electron Energy Distribution Function (EEDF) in laser excited lithium vapor at 2s→3d two-photon resonance. A kinetic model has been constructed which includes essentially all the important collisional ionization, photoionization, electron collisions and radiative interactions that come into play when lithium vapor (density range 1013?- 1014 cm-3) is subject to a sudden pulse of intense laser radiation (power range 105?- 106 W·cm-2) at wavelength 639.1 nm and pulse duration 20 ns. The applied computer simulation model is based on the numerical solution of the time-dependent Boltzman equation and a set of rate equations that describe the rate of change of the formed excited states populations. Using the measured values for the cross-sections and rate coefficients of each physical process considered in the model available in literature, relations are obtained as a function of the electron energy and included in the computational model. We have also studied the time evolution and the laser power dependences of the ion population (atomic and molecular ions) as well as the electron density which are produced during the interaction. The energy spectra of the electrons emerging from the interaction contains a number of peaks corresponding to the low-energy electrons produced by photoionization and collisional ionization such as assosicative and Penning ionization processes. The non-equilibrium shape of these electrons occurs due to relaxation of fast electrons produced by super-elastic collisions with residual excited lithium atoms. Moreover, a reasonable agreement between McGeoch results and our calculations for the temporal behaviour of the electron density is obtained. 展开更多
关键词 Two-Photon Resonance EXCITATION Laser LITHIUM COLLISIONAL Ionization ENERGY Pooling PHOTOIONIZATION electron ENERGY distribution function
暂未订购
A New Electron Charge Distribution Function of Electron
10
作者 Teruo Kurai 《Journal of Modern Physics》 CAS 2023年第2期111-126,共16页
Here we derive a new charge distribution function for an electron by using as an equation of motion a segment of charge whose self energy interaction is due to electric field potential. Our method is based on the cons... Here we derive a new charge distribution function for an electron by using as an equation of motion a segment of charge whose self energy interaction is due to electric field potential. Our method is based on the consideration that a charged distribution function should be represented as an eigenfunction of electron mass energy. We compare our electron charge distribution function to that of Weinberg’s &#951;(r) and our charged electron radius to that obtained by Kim. 展开更多
关键词 Charge distribution function electron
在线阅读 下载PDF
Gap formation around Ω_e/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory 被引量:3
11
作者 Konrad Sauer Klaus Baumgartel Richard Sydora 《Earth and Planetary Physics》 CSCD 2020年第2期138-150,共13页
In this paper we show that two significant phenomena of magnetospheric chorus emission can be explained by the participation of beam-like electron structures,created by Landau-resonant interaction with growing oblique... In this paper we show that two significant phenomena of magnetospheric chorus emission can be explained by the participation of beam-like electron structures,created by Landau-resonant interaction with growing oblique whistler waves.The first concerns the widely observed spectral gap near half the electron cyclotron frequency Ωe;the second is related to the observation of very obliquely propagating lower-band waves that cannot be directly generated by temperature anisotropy.Concerning the gap,kinetic dispersion theory reveals that interference of the beam-related cyclotron mode ω~Ωe-kVb with the conventional whistler mode leads to mode splitting and the appearance of a ’forbidden’ area in the ω-k space.Thereby the beam velocity appears as an essential parameter.It is directly related to the phase velocity of the most unstable whistler wave mode,which is close to VAe/2 for sufficiently hot electrons(VAe is the electron Alfven velocity).To clarify the second point,we show that Landau-resonant beams with Vb Vb<VAe/2,which arise in cold plasmas from unstable upper-band waves,are able to generate lower-band whistler mode waves at very oblique propagation(θ≥60°).Our studies demonstrate the important role of Landau-resonant electrons in nonlinear whistler wave generation in the magnetosphere. 展开更多
关键词 important role play Landau-resonant electrons modification of the electron distribution function gap formation at half the electron cyclotron frequency
在线阅读 下载PDF
Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source 被引量:3
12
作者 金逸舟 杨涓 +2 位作者 汤明杰 罗立涛 冯冰冰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第7期744-750,共7页
The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 seem, standard-state cubic centimeter per... The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 seem, standard-state cubic centimeter per minute) and high durability. Due to the indispensable effects of the primary electron in gas discharge, it is important to experimentally clarify the electron energy structure within the ion source of the ECRIT through analyzing the electron energy distribution function (EEDF) of the plasma inside the thruster. In this article the Langmuir probe diagnosing method was used to diagnose the EEDF, from which the effective electron temperature, plasma density and the electron energy probability function (EEPF) were deduced. The experimental results show that the magnetic field influences the curves of EEDF and EEPF and make the effective plasma parameter nonuniform. The diagnosed electron temperature and density from sample points increased from 4 eV/2 ×10^16 m-3 to 10 eV/4×10^16 m-3 with increasing distances from both the axis and the screen grid of the ion source. Electron temperature and density peaking near the wall coincided with the discharge process. However, a double Maxwellian electron distribution was unexpectedly observed at the position near the axis of the ion source and about 30 mm from the screen grid. Besides, the double Maxwellian electron distribution was more likely to emerge at high power and a low gas flow rate. These phenomena were believed to relate to the arrangements of the gas inlets and the magnetic field where the double Maxwellian electron distribution exits. The results of this research may enhance the understanding of the plasma generation process in the ion source of this type and help to improve its performance. 展开更多
关键词 ion source plasma diagnostic electron energy distribution function
在线阅读 下载PDF
Single-particle distribution function of a quantum dot system at finite temperature
13
作者 文瑞 张德平 田光善 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期416-422,共7页
In the present paper, we shall rigorously re-establish the result of the single-particle function of a quantum dot system at finite temperature. Unlike the proof given in our previous work (Phys. Rev. B 74 195414 (2... In the present paper, we shall rigorously re-establish the result of the single-particle function of a quantum dot system at finite temperature. Unlike the proof given in our previous work (Phys. Rev. B 74 195414 (2006)), we take a different approach, which does not exploit the explicit expression of the Gibbs distribution function. Instead, we only assume that the statistical distribution function of the quantum dot system is thermodynamically stable. As a result, we are able to show clearly that the electronic structure in the quantum dot system is completely determined by its thermodynamic stability. Furthermore, the weaker requirements on the statistical distribution function also make it possible to apply the same method to the quantum dot systems in non-equilibrium states. 展开更多
关键词 quantum dot systems electron distribution function rigorous results
原文传递
A New Insight into Energy Distribution of Electrons in Fuel-Rod Gap in VVER-1000 Nuclear Reactor
14
作者 Fereshteh GOLIAN Ali PAZIRANDEH Saeed MOHAMMADI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第6期441-447,共7页
In order to calculate the electron energy distribution in the fuel rod gap of a VVER- 1000 nuclear reactor, the Fokker-Planck equation (FPE) governing the non-equilibrium behavior of electrons passing through the fu... In order to calculate the electron energy distribution in the fuel rod gap of a VVER- 1000 nuclear reactor, the Fokker-Planck equation (FPE) governing the non-equilibrium behavior of electrons passing through the fuel-rod gap as an absorber has been solved in this paper. Besides, the Monte Carlo Geant4 code was employed to simulate the electron migration in the fuel-rod gap and the energy distribution of electrons was found. As for the results, the accuracy of the FPE was compared to the Geant4 code outcomes and a satisfactory agreement was found. Also, different percentage of the volatile and noble gas fission fragments produced in fission reactions in fuel rod, i.e. Krypton, Xenon, Iodine, Bromine, Rubidium and Cesium were employed so as to investigate their effects on the electrons' energy distribution. The present results show that most of the electrons in the fuel rod's gap were within the thermal energy limitation and the tail of the electron energy distribution was far from a Maxwellian distribution. The interesting outcome was that the electron energy distribution is slightly increased due to the accumulation of fission fragments in the gap. It should be noted that solving the FPE for the energy straggling electrons that are penetrating into the fuel-rod gap in the VVER-1000 nuclear reactor has been carried out for the first time using an analytical approach. 展开更多
关键词 plasma electron energy distribution function Langevin approach based onFokker-Planck equation Geant4 Monte Carlo code
在线阅读 下载PDF
One-Dimensional Scanning of Electronic Wavefunction in Carbon Nanotubes by Molecular Encapsulation
15
作者 Gui Ye Jun Li +1 位作者 Ming-sen Deng Jun Jiang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第6期-,共5页
关键词 Single-walled carbon nanotube Molecular container One-dimensional electron wavefunction distribution Density functional theory
在线阅读 下载PDF
Validity of the two-term Boltzmann approximation employed in the fluid model for high-power microwave breakdown in gas 被引量:2
16
作者 赵朋程 廖成 +1 位作者 杨丹 钟选明 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期380-384,共5页
The electron energy distribution function (EEDF), predicted by the Boltzmann equation solver BOLSIG+ based on the two-term approximation, is introduced into the fluid model for simulating the high-power microwave ... The electron energy distribution function (EEDF), predicted by the Boltzmann equation solver BOLSIG+ based on the two-term approximation, is introduced into the fluid model for simulating the high-power microwave (HPM) breakdown in argon, nitrogen, and air, and its validity is examined by comparing with the results of particle-in-cell Monte Carlo collision (PIC/MCC) simulations as well as the experimental data. Numerical results show that, the breakdown time of the fluid model with the Maxwellian EEDF matches that of the PIC/MCC simulations in nitrogen; however, in argon under high pressures, the results from the Maxwellian EEDF were poor. This is due to an overestimation of the energy tail of the Maxwellian EEDF in argon breakdown. The prediction of the fluid model with the BOLSIG+ EEDF, however, agrees very well with the PIC/MCC prediction in nitrogen and argon over a wide range of pressures. The accuracy of the fluid model with the BOLSIG+ EEDF is also verified by the experimental results of the air breakdown. 展开更多
关键词 fluid model electron energy distribution function gas breakdown particle-in-cell Monte Carlocollision (PIC/MCC) simulation
原文传递
毛白杨木材/MOF-5复合材料的制备及甲苯吸附性能研究 被引量:2
17
作者 李新宇 高玉磊 +4 位作者 李世杰 杨易菲 张进 任云鹏 赵建国 《木材科学与技术》 北大核心 2024年第1期42-50,共9页
优化MOF-5的合成工艺,确定金属中心与有机配体的最佳配比,并基于最佳配比通过真空浸渍和水热作用在毛白杨木材孔隙内部原位合成MOF-5,制备毛白杨木材/MOF-5复合材料,并对毛白杨木材/MOF-5复合材料的微观形貌、结合机理、孔隙结构和甲苯... 优化MOF-5的合成工艺,确定金属中心与有机配体的最佳配比,并基于最佳配比通过真空浸渍和水热作用在毛白杨木材孔隙内部原位合成MOF-5,制备毛白杨木材/MOF-5复合材料,并对毛白杨木材/MOF-5复合材料的微观形貌、结合机理、孔隙结构和甲苯吸附性能进行表征。结果表明,当金属中心与有机配体物质的量比为1∶3时,合成的MOF-5晶体粒径较小,BET比表面积为268.729 m^(2)/g,孔容为0.136 cm^(3)/g,且具备典型的MOF-5晶体X射线特征峰。在毛白杨木材孔隙内部原位合成的MOF-5的平均负载量为22.6%;红外光谱的分析结果显示MOF-5与毛白杨木材通过氢键和静电相互作用相结合。扫描电镜、压汞法和氮气吸/脱附测试的孔隙结构表明,MOF-5填充了毛白杨木材中的部分大孔和介孔,增加了微孔的比表面积和孔容。常温常压下毛白杨木材/MOF-5复合材料对甲苯的最大吸附量为16.07 cm^(3)/g,展现了较好的甲苯吸/脱附性能。毛白杨木材/MOF-5复合材料在气体吸附与分离领域展现了较好的应用潜力,这为速生木材作为吸附材料的功能化应用提供了参考。 展开更多
关键词 毛白杨木材 金属有机框架 孔径分布 甲苯吸附 功能化改性
在线阅读 下载PDF
Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons
18
作者 S.Ahmadi ABRISHAMI M.Nouri KADIJANI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第6期545-551,共7页
In this work, the effects of superthermal and trapped electrons on the oblique propa- gation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simu... In this work, the effects of superthermal and trapped electrons on the oblique propa- gation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (k) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically. 展开更多
关键词 dust acoustic wave trapped electrons superthermal electrons kappa distribution function
在线阅读 下载PDF
Numerical Investigation of the Tri-Atomic Ions Formation during Laser Ionization Based on Resonance Saturation
19
作者 M. A. Abdelati M. A. Mahmoud Y. E. E. Gamal 《Journal of Applied Mathematics and Physics》 2014年第12期1123-1129,共7页
We present a theoretical investigation of plasma generation in sodium vapor induced by laser radiation tuned to the first resonance line (3S-3P) at λ = 589 ns. A set of rate equations that describe the rate of change... We present a theoretical investigation of plasma generation in sodium vapor induced by laser radiation tuned to the first resonance line (3S-3P) at λ = 589 ns. A set of rate equations that describe the rate of change of the ground and excited states population as well as the temporal variation of the electron energy distribution function (EEDF), beside the formed atomic ion Na+, molecular ion ?and tri-atomic ions are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities under the experimental conditions of Tapalian and Smith (1993) to test the existence of the formed tri-atomic ions. The numerical calculations of the electron energy distribution function (EEDF) show that a deviation from the Maxwellian distribution due to the super elastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Horn- beck ionization processes for producing , the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations. 展开更多
关键词 Plasma Laser COLLISIONAL IONIZATION Association IONIZATION Tri-Atomic Ions PHOTOIONIZATION electron Energy distribution function
暂未订购
Numerical Study of the Threshold Intensity Dependence on Wavelength in Laser Spark Ignition of Molecular Hydrogen Combustion
20
作者 Kholoud A. Hamam Galila Abdellatif Yosr E. E.-D. Gamal 《Journal of Modern Physics》 2013年第3期311-320,共10页
A numerical investigation of laser wavelength dependence on the threshold intensity of spark ignition in molecular hydrogen over a wide pressure range is presented. A modified electron cascade model (Gamal et al., 199... A numerical investigation of laser wavelength dependence on the threshold intensity of spark ignition in molecular hydrogen over a wide pressure range is presented. A modified electron cascade model (Gamal et al., 1993) is applied under the experimental conditions that carried out by Phuoc (2000) to determine the threshold intensity dependence on gas pressure for spark ignition in hydrogen combustion using two laser wavelengths namely;1064 nm and 532 nm. The model involves the solution of the time dependent Boltzmann equation for the electron energy distribution function (EEDF) and a set of rate equations that describe the change of the formed excited molecules population. The model takes into account most of the physical processes that expected to occur in the interaction region. The results showed good agreement between the calculated thresholds for spark ignition and those measured ones for both wavelengths, where the threshold intensities corresponding to the short wavelength (532 nm) are found to be higher than those calculated for the longer one (1064 nm). This result indicates the depletion of the high density of low energy electrons generated through multi-photon ionization at the short wavelength via electron diffusion and vibrational excitation. The study of the EEDF and its parameters (viz, the temporal evolution of: the electron density, ionization rate electron mean energy, …) revealed the important role played by each physical process to the spark ignition as a function of both laser wavelength and gas pressure. More over the study of the time variation of the EEDF explains the characteristics of the ignited spark at the two wavelengths for the tested pressure values. 展开更多
关键词 LASER WAVELENGTH Hydrogen Gas THRESHOLD INTENSITY electron Energy distribution function COMBUSTION Spark IGNITION
暂未订购
上一页 1 2 7 下一页 到第
使用帮助 返回顶部