Photheurrent behaviours of 1,1'-di linolene ferrocenyl LB films modified CdSe thin film electrode were studied by scanned laset spot method. The increase in photocurrent response of modified electrode compared to ...Photheurrent behaviours of 1,1'-di linolene ferrocenyl LB films modified CdSe thin film electrode were studied by scanned laset spot method. The increase in photocurrent response of modified electrode compared to the bare electrode was analyzed by statistical calculation. The acceleration of interfacial electron transfer by modified molecules which act as redox mediator was discussed.展开更多
The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the o...The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.展开更多
Modifed starch flms are gaining attention as biodegradable and sustainable materials in the food packaging industry.However,their inherent properties,including their brittleness and low antimicrobial and antioxidant c...Modifed starch flms are gaining attention as biodegradable and sustainable materials in the food packaging industry.However,their inherent properties,including their brittleness and low antimicrobial and antioxidant capacities,limit their extensive application.To address these shortcomings,in this study,a composite flm was developed using potato-modifed starch(PMS)as the base material,enhanced with konjac glucomannan(KGM),Pleurotus citrinopileatus polysaccharide(PCP),and nano titanium dioxide(nano TiO_(2)).Additionally,PCP and nano TiO_(2),which are bioactive components,were incorporated to improve the functional properties of the flms,promoting their application in food preservation.The optimal composition of the composite flms was determined through a fuzzy comprehensive evaluation,and the best performance was achieved with 10 g/L of PCP and 1.5 g/L of nano TiO_(2).These composite flms exhibited high mechanical strength,antimicrobial capacity,and antioxidant capacity while being noncytotoxic.The practical effcacy of the composite flms was verifed by applying them to preserve fresh-cut yams at room temperature,where they effectively delayed spoilage and maintained yam quality.This study demonstrates that PMS/KGM/PCP/nano TiO2 composite flms can signifcantly enhance the shelf life of fresh produce,providing a viable route for eco-friendly food preservation.展开更多
Lactate serves as a key energy metabolite in the central nervous system,facilitating essential brain functions,including energy supply,signaling,and epigenetic modulation.Moreover,it links epigenetic modifications wit...Lactate serves as a key energy metabolite in the central nervous system,facilitating essential brain functions,including energy supply,signaling,and epigenetic modulation.Moreover,it links epigenetic modifications with metabolic reprogramming.Nonetheless,the specific mechanisms and roles of this connection in astrocytes remain unclear.Therefore,this review aims to explore the role and specific mechanisms of lactate in the metabolic reprogramming of astrocytes in the central nervous system.The close relationship between epigenetic modifications and metabolic reprogramming was discussed.Therapeutic strategies for targeting metabolic reprogramming in astrocytes in the central nervous system were also outlined to guide future research in central nervous system diseases.In the nervous system,lactate plays an essential role.However,its mechanism of action as a bridge between metabolic reprogramming and epigenetic modifications in the nervous system requires future investigation.The involvement of lactate in epigenetic modifications is currently a hot research topic,especially in lactylation modification,a key determinant in this process.Lactate also indirectly regulates various epigenetic modifications,such as N6-methyladenosine,acetylation,ubiquitination,and phosphorylation modifications,which are closely linked to several neurological disorders.In addition,exploring the clinical applications and potential therapeutic strategies of lactic acid provides new insights for future neurological disease treatments.展开更多
Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immun...Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.展开更多
Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pell...Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.展开更多
Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability.This study comprehensively investigates the agglomeratio...Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability.This study comprehensively investigates the agglomeration characteristics of siderite particles after argon(Ar)plasma surface modification through settling tests,flocs size measurements,and fractal dimension calculations.Ar plasma surface modification promotes the agglomeration of siderite particles,as evidenced by increased floc size and density.The agglomeration mechanism induced by Ar plasma surface modification is evaluated using a theoretical model combining the surface element integration(SEI)approach,differential geometry,and the composite Simpson's rule.Changes in surface roughness,wettability,and charge are considered in this model.Compared to the unpretreated siderite particles,the energy barrier for interaction of the 30-min Ar plasma-pretreated siderite particles decreases from 2.3×10-^(17)J to 1.6×10^(-17)J.This reduction provides strong evidence for the agglomeration behavior of siderite particles.Furthermore,flotation experiments confirm that Ar plasma surface modification is conducive to the aggregation flotation of siderite.These findings offer crucial insights into particle aggregation and dispersion behaviors,with notable application in mineral flotation.展开更多
To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt b...To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.展开更多
Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophos...Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophosphate-activated protein kinase(AMPK)succinylation in cholelithiasis.Using mouse models and gallbladder mucosal epithelial cells,they found that KAT2A inhibits gallstones through AMPK K170 succinylation,thereby activating the AMPK/silent information regulator 1 pathway to reduce inflammation and pyroptosis.This study is the first to connect lysine succinylation with cholelithiasis,offering new insights and identifying succinylation as a potential therapeutic target.Future research should confirm these findings using patient samples,investigate other posttranslational modifications,and use structural biology to clarify succinylationinduced conformational changes,thereby bridging basic research to clinical applications.展开更多
Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.L...Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.展开更多
MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO...MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO_(x)-CeO_(2)catalyst that achieves enhanced NO conversion rate and stability under harsh conditions.The catalyst was synthesized by decorating MnOx crystals with amorphous CeO_(2),followed by loading hydrophobic silica on the external surfaces.The hydrophobic silica allowed the adsorption of NH_(3)and NO and diffusion of H,suppressed the adsorption of H_(2)O,and prevented SO_(2)interaction with the Mn active sites,achieving selective molecular discrimination at the catalyst surface.At 120℃,under H_(2)O and SO_(2)exposure,the optimal hydrophobic catalyst maintains 82%NO conversion rate compared with 69%for the unmodified catalyst.The average adsorption energies of NH_(3),H_(2)O,and SO_(2)decreased by 0.05,0.43,and 0.52 eV,respectively.The NO reduction pathway follows the Eley-Rideal mechanism,NH_(3)^(*)+*→NH_(2)^(*)+H^(*)followed by NH_(2)^(*)+NO^(*)→N_(2)^(*)+H_(2)O^(*),with NH_(3)dehydrogenation being the rate determining step.Hydrophobic modification increased the activation energy for H atom transfer,leading to a minor decrease in the NO conversion rate at 120℃.This work demonstrates a viable strategy for developing robust NH_(3)-S CR catalysts capable of efficient operation in water-and sulfur-rich environments.展开更多
The neuroinflammatory response mediated by microglial activation plays an important role in the secondary nerve injury of traumatic brain injury.The post-transcriptional modification of N^(6)-methyladenosine is ubiqui...The neuroinflammatory response mediated by microglial activation plays an important role in the secondary nerve injury of traumatic brain injury.The post-transcriptional modification of N^(6)-methyladenosine is ubiquitous in the immune response of the central nervous system.The fat mass and obesity-related protein catalyzes the demethylation of N^(6)-methyladenosine modifications on mRNA and is widely expressed in various tissues,participating in the regulation of multiple diseases’biological processes.However,the role of fat mass and obesity in microglial activation and the subsequent neuroinflammatory response after traumatic brain injury is unclear.In this study,we found that the expression of fat mass and obesity was significantly down-regulated in both lipopolysaccharide-treated BV2 cells and a traumatic brain injury mouse model.After fat mass and obesity interference,BV2 cells exhibited a pro-inflammatory phenotype as shown by the increased proportion of CD11b^(+)/CD86^(+)cells and the secretion of pro-inflammatory cytokines.Fat mass and obesity-mediated N^(6)-methyladenosine demethylation accelerated the degradation of ADAM17 mRNA,while silencing of fat mass and obesity enhanced the stability of ADAM17 mRNA.Therefore,down-regulation of fat mass and obesity expression leads to the abnormally high expression of ADAM17 in microglia.These results indicate that the activation of microglia and neuroinflammatory response regulated by fat mass and obesity-related N^(6)-methyladenosine modification plays an important role in the pro-inflammatory process of secondary injury following traumatic brain injury.展开更多
Ufmylation is an ubiquitin-like post-translational modification characterized by the covalent binding of mature UFM1 to target proteins.Although the consequences of ufmylation on target proteins are not fully understo...Ufmylation is an ubiquitin-like post-translational modification characterized by the covalent binding of mature UFM1 to target proteins.Although the consequences of ufmylation on target proteins are not fully understood,its importance is evident from the disorders resulting from its dysfunction.Numerous case reports have established a link between biallelic loss-of-function and/or hypomorphic variants in ufmylation-related genes and a spectrum of pediatric neurodevelopmental disorders.展开更多
Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein ...Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications.Lactate,once considered merely a byproduct of anaerobic metabolism,has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system.Furthermore,recent studies have emphasized the significant role of lactate in numerous neurological diseases,including Alzheimer's disease,Parkinson's disease,acute cerebral ischemic stroke,multiple sclerosis,Huntington's disease,and myasthenia gravis.The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases,aiming to clarify their mechanisms of action and identify potential therapeutic targets.As such,this work provides an overview of the metabolic regulatory roles of lactate in various disorders,emphasizing its involvement in the regulation of brain function.Additionally,the specific mechanisms of brain lactate metabolism are discussed,suggesting the unique roles of lactate in modulating brain function.As a critical aspect of lactate function,lactylation modifications,including both histone and non-histone lactylation,are explored,with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications,such as lactylation writers and erasers.The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized,revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders.Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases.展开更多
In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,...In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,allowing them to target deep brain lesions.Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines,mRNAs,and disease-related proteins,thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects.However,exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells.This limitation can lead to side effects and toxicity when they interact with non-specific cells.Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases.In this review,we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases.Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases.We introduce the strategies being used to enhance exosome targeting,including genetic engineering,chemical modifications(both covalent,such as click chemistry and metabolic engineering,and non-covalent,such as polyvalent electrostatic and hydrophobic interactions,ligand-receptor binding,aptamer-based modifications,and the incorporation of CP05-anchored peptides),and nanomaterial modifications.Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases.However,several challenges remain in the clinical application of exosomes.Improvements are needed in preparation,characterization,and optimization methods,as well as in reducing the adverse reactions associated with their use.Additionally,the range of applications and the safety of exosomes require further research and evaluation.展开更多
Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytoki...Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytokine release,blood–brain barrier disruption,neuronal cell death,and ultimately behavioral impairment.Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models.However,in clinical trials of anti-inflammatory agents,longterm immunosuppression has not demonstrated significant clinical benefits for patients.This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair,as well as the complex pathophysiologic inflammatory processes in stroke.Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies.Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke.Furthermore,epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management.In this review,we summarize current findings on the epigenetic regulation of the inflammatory response in stroke,focusing on key signaling pathways including nuclear factor-kappa B,Janus kinase/signal transducer and activator of transcription,and mitogen-activated protein kinase as well as inflammasome activation.We also discuss promising molecular targets for stroke treatment.The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke,leading to improved post-stroke outcomes.展开更多
The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective ...The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.展开更多
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi...Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.展开更多
Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic natu...Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.展开更多
Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the c...Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the challenges of the iodine cathode and metal anode,including the hydrogen evolution reaction(HER),sluggish kinetics,shuttle effect of polyiodine ion at the cathode and dendrite formation,corrosion and passivation at the anode.This review summarizes recent developments in metaliodine batteries,including zinc-iodine batteries,lithiumiodine batteries,sodium-iodine batteries,etc.The challenges in the cathode,anode,electrolyte and separator of metal-iodine batteries are discussed,along with the corresponding design and synthesis strategies and specific methods to improve the electrochemical performance.Selecting appropriate cathode hosts,constructing surface protective layers,adding anode additives,making threedimensional anode designs and employing better electrolytes and functional separators to obstruct the production and shuttling of polyiodine ions are highlighted.Finally,future guidelines and directions for the development of metal-iodine batteries are proposed.展开更多
文摘Photheurrent behaviours of 1,1'-di linolene ferrocenyl LB films modified CdSe thin film electrode were studied by scanned laset spot method. The increase in photocurrent response of modified electrode compared to the bare electrode was analyzed by statistical calculation. The acceleration of interfacial electron transfer by modified molecules which act as redox mediator was discussed.
基金Supported by R&D Program of Beijing Municipal Education Commission of China(Grant No.KZ200010009041)Beijing Municipal University Youth Top Talents Training Program of China(Grant No.CIT&TCD201704014)Natural Science Foundation of China(Grant No.51475003).
文摘The forming limit diagram plays an important role in predicting the forming limit of sheet metals.Previous studies have shown that,the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is efective and simple.The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area.In this study,in order to improve the accuracy of the original shear failure criterion,a modifed shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion.The detailed improvement strategies of the shear failure criterion and the complete calculation process are given.Based on the modifed shear failure criterion and diferent constitutive equations,the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated.By comparing the theoretical and experimental results,it is shown that proposed modifed shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion.The efect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth.The modifed shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.
基金supported by the Shenyang Medical College Scientifc Research Innovation Fund(Nos.20182033 and 20191038),China。
文摘Modifed starch flms are gaining attention as biodegradable and sustainable materials in the food packaging industry.However,their inherent properties,including their brittleness and low antimicrobial and antioxidant capacities,limit their extensive application.To address these shortcomings,in this study,a composite flm was developed using potato-modifed starch(PMS)as the base material,enhanced with konjac glucomannan(KGM),Pleurotus citrinopileatus polysaccharide(PCP),and nano titanium dioxide(nano TiO_(2)).Additionally,PCP and nano TiO_(2),which are bioactive components,were incorporated to improve the functional properties of the flms,promoting their application in food preservation.The optimal composition of the composite flms was determined through a fuzzy comprehensive evaluation,and the best performance was achieved with 10 g/L of PCP and 1.5 g/L of nano TiO_(2).These composite flms exhibited high mechanical strength,antimicrobial capacity,and antioxidant capacity while being noncytotoxic.The practical effcacy of the composite flms was verifed by applying them to preserve fresh-cut yams at room temperature,where they effectively delayed spoilage and maintained yam quality.This study demonstrates that PMS/KGM/PCP/nano TiO2 composite flms can signifcantly enhance the shelf life of fresh produce,providing a viable route for eco-friendly food preservation.
基金supported by the National Natural Science Foundation of China,Nos.82071383,82371392(to BN)the Natural Science Foundation of Shandong Province of China(Key Project),No.ZR2020KH007(to BN)+1 种基金“Taishan Scholar Distinguished Expert Program”of Shandong Province,No.tstp20231257(to BN)Health Commission Science and Technology Plan Project of Jinan,No.2023-1-8(to YZ).
文摘Lactate serves as a key energy metabolite in the central nervous system,facilitating essential brain functions,including energy supply,signaling,and epigenetic modulation.Moreover,it links epigenetic modifications with metabolic reprogramming.Nonetheless,the specific mechanisms and roles of this connection in astrocytes remain unclear.Therefore,this review aims to explore the role and specific mechanisms of lactate in the metabolic reprogramming of astrocytes in the central nervous system.The close relationship between epigenetic modifications and metabolic reprogramming was discussed.Therapeutic strategies for targeting metabolic reprogramming in astrocytes in the central nervous system were also outlined to guide future research in central nervous system diseases.In the nervous system,lactate plays an essential role.However,its mechanism of action as a bridge between metabolic reprogramming and epigenetic modifications in the nervous system requires future investigation.The involvement of lactate in epigenetic modifications is currently a hot research topic,especially in lactylation modification,a key determinant in this process.Lactate also indirectly regulates various epigenetic modifications,such as N6-methyladenosine,acetylation,ubiquitination,and phosphorylation modifications,which are closely linked to several neurological disorders.In addition,exploring the clinical applications and potential therapeutic strategies of lactic acid provides new insights for future neurological disease treatments.
基金supported by the National Natural Science Foundation of China(Nos.82573045,82460602,82560459)the Hainan Provincial Graduate Student Innovative Research Project(No.Qhys2024-440).
文摘Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.
基金financial support by the National Key Research and Development Program of China(No.2023YFC2907801)the Hunan Provincial Natural Science Foundation of China(No.2023JJ40760)the Scientific and Technological Project of Yunnan Precious Metals Laboratory,China(No.YPML-2023050276)。
文摘Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.
基金financially supported by the National Natural Science Foundation of China(No.52204284)the China Postdoctoral Science Foundation(No.2025MD784125)+2 种基金the Natural Science Foundation of Shaanxi Province,China(No.2024JC-YBQN-0365)the Shaanxi Province Postdoctoral Science Foundation,China(No.2025BSHSDZZ363)Outstanding Youth Science Fund of Xi’an University of Science and Technology,China(No.202308)。
文摘Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability.This study comprehensively investigates the agglomeration characteristics of siderite particles after argon(Ar)plasma surface modification through settling tests,flocs size measurements,and fractal dimension calculations.Ar plasma surface modification promotes the agglomeration of siderite particles,as evidenced by increased floc size and density.The agglomeration mechanism induced by Ar plasma surface modification is evaluated using a theoretical model combining the surface element integration(SEI)approach,differential geometry,and the composite Simpson's rule.Changes in surface roughness,wettability,and charge are considered in this model.Compared to the unpretreated siderite particles,the energy barrier for interaction of the 30-min Ar plasma-pretreated siderite particles decreases from 2.3×10-^(17)J to 1.6×10^(-17)J.This reduction provides strong evidence for the agglomeration behavior of siderite particles.Furthermore,flotation experiments confirm that Ar plasma surface modification is conducive to the aggregation flotation of siderite.These findings offer crucial insights into particle aggregation and dispersion behaviors,with notable application in mineral flotation.
基金Funded by the National Natural Science Foundation of China(No.52278446)。
文摘To explore the best preparation process for terminal blend(TB)composite-modified asphalt and to filter its formulation with excellent performance,this study evaluates the performance of TB composite modified asphalt by physical property index,microscopic morphology,rheological testing,and infrared spectroscopy on multiple scales.The results show that the best preparation process for TB-modified asphalt is stirring at 260℃ for 4 h at 400 rpm,which significantly reduces the modification time of the asphalt.From a physical property viewpoint,the TB composite-modified asphalt sample with 5% styrene-butadiene-styrene(SBS)+1% aromatics+0.1% sulfur exhibits high-comprehensive,high-and low-temperature properties.More-over,its crosslinked mesh structure comprises black rubber particles uniformly interwoven in the middle,which further enhances the performance of the asphalt and results in an excellent performance formulation.In addition,the sample with 5%SBS content has a higher G*value and smaller δ value than that with 3%SBS content,indicating that its high-temperature resistance is improved.The effect of adding 3%SBS content on the viscoelastic ratio is,to some extent,less than that caused by 20% rubber powder.
基金Supported by Wenzhou Science and Technology Bureau,No.Y20240207.
文摘Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophosphate-activated protein kinase(AMPK)succinylation in cholelithiasis.Using mouse models and gallbladder mucosal epithelial cells,they found that KAT2A inhibits gallstones through AMPK K170 succinylation,thereby activating the AMPK/silent information regulator 1 pathway to reduce inflammation and pyroptosis.This study is the first to connect lysine succinylation with cholelithiasis,offering new insights and identifying succinylation as a potential therapeutic target.Future research should confirm these findings using patient samples,investigate other posttranslational modifications,and use structural biology to clarify succinylationinduced conformational changes,thereby bridging basic research to clinical applications.
基金financially supported by Shenzhen Science and Technology Program(JCYJ20240813142900001)Guangdong Provincial Key Laboratory of New Energy Materials Service Safety。
文摘Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.
基金financially sponsored by the National Natural Science Foundation of China(No.52204414)the National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program,China(No.TC220H06N)+1 种基金the National Key R&D Program of China(No.2021YFC1910504)the Fundamental Research Funds for the Central Universities,China(No.FRFTP-20-097A1Z)。
文摘MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO_(x)-CeO_(2)catalyst that achieves enhanced NO conversion rate and stability under harsh conditions.The catalyst was synthesized by decorating MnOx crystals with amorphous CeO_(2),followed by loading hydrophobic silica on the external surfaces.The hydrophobic silica allowed the adsorption of NH_(3)and NO and diffusion of H,suppressed the adsorption of H_(2)O,and prevented SO_(2)interaction with the Mn active sites,achieving selective molecular discrimination at the catalyst surface.At 120℃,under H_(2)O and SO_(2)exposure,the optimal hydrophobic catalyst maintains 82%NO conversion rate compared with 69%for the unmodified catalyst.The average adsorption energies of NH_(3),H_(2)O,and SO_(2)decreased by 0.05,0.43,and 0.52 eV,respectively.The NO reduction pathway follows the Eley-Rideal mechanism,NH_(3)^(*)+*→NH_(2)^(*)+H^(*)followed by NH_(2)^(*)+NO^(*)→N_(2)^(*)+H_(2)O^(*),with NH_(3)dehydrogenation being the rate determining step.Hydrophobic modification increased the activation energy for H atom transfer,leading to a minor decrease in the NO conversion rate at 120℃.This work demonstrates a viable strategy for developing robust NH_(3)-S CR catalysts capable of efficient operation in water-and sulfur-rich environments.
基金supported by grants from the Major Projects of Health Science Research Foundation for Middle-Aged and Young Scientist of Fujian Province,China,No.2022ZQNZD01010010the National Natural Science Foundation of China,No.82371390Fujian Province Scientific Foundation,No.2023J01725(all to XC).
文摘The neuroinflammatory response mediated by microglial activation plays an important role in the secondary nerve injury of traumatic brain injury.The post-transcriptional modification of N^(6)-methyladenosine is ubiquitous in the immune response of the central nervous system.The fat mass and obesity-related protein catalyzes the demethylation of N^(6)-methyladenosine modifications on mRNA and is widely expressed in various tissues,participating in the regulation of multiple diseases’biological processes.However,the role of fat mass and obesity in microglial activation and the subsequent neuroinflammatory response after traumatic brain injury is unclear.In this study,we found that the expression of fat mass and obesity was significantly down-regulated in both lipopolysaccharide-treated BV2 cells and a traumatic brain injury mouse model.After fat mass and obesity interference,BV2 cells exhibited a pro-inflammatory phenotype as shown by the increased proportion of CD11b^(+)/CD86^(+)cells and the secretion of pro-inflammatory cytokines.Fat mass and obesity-mediated N^(6)-methyladenosine demethylation accelerated the degradation of ADAM17 mRNA,while silencing of fat mass and obesity enhanced the stability of ADAM17 mRNA.Therefore,down-regulation of fat mass and obesity expression leads to the abnormally high expression of ADAM17 in microglia.These results indicate that the activation of microglia and neuroinflammatory response regulated by fat mass and obesity-related N^(6)-methyladenosine modification plays an important role in the pro-inflammatory process of secondary injury following traumatic brain injury.
文摘Ufmylation is an ubiquitin-like post-translational modification characterized by the covalent binding of mature UFM1 to target proteins.Although the consequences of ufmylation on target proteins are not fully understood,its importance is evident from the disorders resulting from its dysfunction.Numerous case reports have established a link between biallelic loss-of-function and/or hypomorphic variants in ufmylation-related genes and a spectrum of pediatric neurodevelopmental disorders.
基金supported by Applied Basic Research Joint Fund Project of Yunnan Province,No.202301AY070001-200Middle-aged Academic and Technical Training Project for High-Level Talents,No.202105AC160065+1 种基金Yunnan Clinical Medical Center for Neurological and Cardiovascular Diseases,No.YWLCYXZX2023300077Key Clinical Specialty of Neurology in Yunnan Province,No.300064(all to CL)。
文摘Research into lactylation modifications across various target organs in both health and disease has gained significant attention.Many essential life processes and the onset of diseases are not only related to protein abundance but are also primarily regulated by various post-translational protein modifications.Lactate,once considered merely a byproduct of anaerobic metabolism,has emerged as a crucial energy substrate and signaling molecule involved in both physiological and pathological processes within the nervous system.Furthermore,recent studies have emphasized the significant role of lactate in numerous neurological diseases,including Alzheimer's disease,Parkinson's disease,acute cerebral ischemic stroke,multiple sclerosis,Huntington's disease,and myasthenia gravis.The purpose of this review is to synthesize the current research on lactate and lactylation modifications in neurological diseases,aiming to clarify their mechanisms of action and identify potential therapeutic targets.As such,this work provides an overview of the metabolic regulatory roles of lactate in various disorders,emphasizing its involvement in the regulation of brain function.Additionally,the specific mechanisms of brain lactate metabolism are discussed,suggesting the unique roles of lactate in modulating brain function.As a critical aspect of lactate function,lactylation modifications,including both histone and non-histone lactylation,are explored,with an emphasis on recent advancements in identifying the key regulatory enzymes of such modifications,such as lactylation writers and erasers.The effects and specific mechanisms of abnormal lactate metabolism in diverse neurological diseases are summarized,revealing that lactate acts as a signaling molecule in the regulation of brain functions and that abnormal lactate metabolism is implicated in the progression of various neurological disorders.Future research should focus on further elucidating the molecular mechanisms underlying lactate and lactylation modifications and exploring their potential as therapeutic targets for neurological diseases.
基金supported by the National Natural Science Foundation of China,No.22103055(to JG)the Natural Science Foundation of Hebei Province,No.F2024110001(to HC)Open Project of Tianjin Key Laboratory of Optoelectronic Detection Technology and System,Nos.2024LODTS215(to NL),2024LODTS216(to XS).
文摘In recent years,exosomes have garnered extensive attention as therapeutic agents and early diagnostic markers in neurodegenerative disease research.Exosomes are small and can effectively cross the blood-brain barrier,allowing them to target deep brain lesions.Recent studies have demonstrated that exosomes derived from different cell types may exert therapeutic effects by regulating the expression of various inflammatory cytokines,mRNAs,and disease-related proteins,thereby halting the progression of neurodegenerative diseases and exhibiting beneficial effects.However,exosomes are composed of lipid bilayer membranes and lack the ability to recognize specific target cells.This limitation can lead to side effects and toxicity when they interact with non-specific cells.Growing evidence suggests that surface-modified exosomes have enhanced targeting capabilities and can be used as targeted drug-delivery vehicles that show promising results in the treatment of neurodegenerative diseases.In this review,we provide an up-to-date overview of existing research aimed at devising approaches to modify exosomes and elucidating their therapeutic potential in neurodegenerative diseases.Our findings indicate that exosomes can efficiently cross the blood-brain barrier to facilitate drug delivery and can also serve as early diagnostic markers for neurodegenerative diseases.We introduce the strategies being used to enhance exosome targeting,including genetic engineering,chemical modifications(both covalent,such as click chemistry and metabolic engineering,and non-covalent,such as polyvalent electrostatic and hydrophobic interactions,ligand-receptor binding,aptamer-based modifications,and the incorporation of CP05-anchored peptides),and nanomaterial modifications.Research into these strategies has confirmed that exosomes have significant therapeutic potential for neurodegenerative diseases.However,several challenges remain in the clinical application of exosomes.Improvements are needed in preparation,characterization,and optimization methods,as well as in reducing the adverse reactions associated with their use.Additionally,the range of applications and the safety of exosomes require further research and evaluation.
基金supported by the National Natural Science Foundation of China,Nos.32070735(to QL),82371321(to QL),82171270(to ZL)Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1(to ZL)+2 种基金the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)。
文摘Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytokine release,blood–brain barrier disruption,neuronal cell death,and ultimately behavioral impairment.Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models.However,in clinical trials of anti-inflammatory agents,longterm immunosuppression has not demonstrated significant clinical benefits for patients.This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair,as well as the complex pathophysiologic inflammatory processes in stroke.Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies.Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke.Furthermore,epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management.In this review,we summarize current findings on the epigenetic regulation of the inflammatory response in stroke,focusing on key signaling pathways including nuclear factor-kappa B,Janus kinase/signal transducer and activator of transcription,and mitogen-activated protein kinase as well as inflammasome activation.We also discuss promising molecular targets for stroke treatment.The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke,leading to improved post-stroke outcomes.
基金supported by National Natural Science Foundation of China(Grant No.52270106 and 22266021)Yunnan Major Scientific and Technological Projects(grant No.202202AG050005)Yunnan Fundamental Research Projects(grant No.202201AT070116).
文摘The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.
基金supported by National Natural Science Foundation of China(22279018)National Natural Science Foundation of China(22005055)Natural Science Foundation of Fujian Province(2022J01085).
文摘Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.
基金supported by the National Natural Science Foundation of China(Nos.52372093 and 52102145)the Key R&D Program of Shaanxi Province(Nos.2023GXLH-045 and 2022SF-168)+4 种基金the Xi’an Programs for Science and Technology Plan(Nos.2020KJRC0090 and 21XJZZ0045)the Opening Project of Shanxi Key Laboratory of Advanced Manufacturing Technology(No.XJZZ202001)the Xi’an Municipal Bureau of Science and Technology(No.21XJZZ0054)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,Shaanxi University of Science and Technology(No.KFKT2021-01)the Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(No.KFKT2021-01).
文摘Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.
基金supported by the National Natural Science Foundation of China(No.52371240)the Natural Science Foundation of Jiangsu Province(No.BK20230556)+2 种基金China Postdoctoral Science Foundation(No.2022M722686)Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2023ZB701)The Big Data Computing Center of Southeast University.
文摘Metal-iodine batteries have attracted widespread attention due to their long cycle life,high energy density,remarkable charging capability and low self-discharge rate.Nevertheless,this development is hampered by the challenges of the iodine cathode and metal anode,including the hydrogen evolution reaction(HER),sluggish kinetics,shuttle effect of polyiodine ion at the cathode and dendrite formation,corrosion and passivation at the anode.This review summarizes recent developments in metaliodine batteries,including zinc-iodine batteries,lithiumiodine batteries,sodium-iodine batteries,etc.The challenges in the cathode,anode,electrolyte and separator of metal-iodine batteries are discussed,along with the corresponding design and synthesis strategies and specific methods to improve the electrochemical performance.Selecting appropriate cathode hosts,constructing surface protective layers,adding anode additives,making threedimensional anode designs and employing better electrolytes and functional separators to obstruct the production and shuttling of polyiodine ions are highlighted.Finally,future guidelines and directions for the development of metal-iodine batteries are proposed.