Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use...This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.展开更多
Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making sys...Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making.展开更多
BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models ...BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.展开更多
Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual pat...Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment.展开更多
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn...Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.展开更多
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ...Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.展开更多
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb...The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.展开更多
Due to the decrease in grid size associated with the convergence of meridians toward the poles inspherical coordinates, the time steps in many global climate models with finite-difference method are restrictedto be un...Due to the decrease in grid size associated with the convergence of meridians toward the poles inspherical coordinates, the time steps in many global climate models with finite-difference method are restrictedto be unpleasantly small. To overcome the problem, a reduced grid is introduced to LASG/IAP world oceangeneral circulation models. The reduced grid is implemented successfully in the coarser resolutions versionmodel L30T63 at first. Then, it is carried out in the improved version model LICOM with finer resolutions. Inthe experiment with model L30T63, under time step unchanged though, execution time per single model run isshortened significantly owing to the decrease of grid number and filtering execution in high latitudes. Resultsfrom additional experiments with L30T63 show that the time step of integration can be quadrupled at most inreduced grid with refinement ratio 3. In the experiment with model LICOM and with the model’s original timestep unchanged, the model covered area is extended to the whole globe from its original case with the grid pointof North Pole considered as an isolated island and the results of experiment are shown to be acceptable.展开更多
Potential of climate change impact assessment on hydrology and water resources of rivers is increasing from time to time due to its importance for water resources planning and management in the future. In order to car...Potential of climate change impact assessment on hydrology and water resources of rivers is increasing from time to time due to its importance for water resources planning and management in the future. In order to carry out climate change impact studies, using General Climate Models (GCM) is a common practice and before using any of these models, it is essential to validate the models for the selected study area. Blue Nile River is one of the most sensitive rivers towards climate change impacts. The main source of Blue Nile River is Lake Tana where the two adjacent tributary rivers, Ribb & Gumera, are located and the main object of this paper is validation of current 15 GCM outputs (IPCC-AR5) over these two rivers using empirical quantile perturbation downscaling technique. The performance of the downscaled outputs of GCMs were evaluated using statistical indicators and graphical techniques for evapotranspiration, rainfall and temperature variables using observed daily meteorological datasets collected from five stations (Addis Zemen, Bahirdar, Debretabor, Woreta and Yifag) for the control period 1971-2000. Analysis results showed that the correlation coefficient of all models for mean monthly (MM) rainfall are 12% - 45%;and the Bias and RMSE -46 mm to +169 mm and 62 mm to 241 mm, respectively. The Bias and RMSE for MM maximum temperature are -2.5°C to +35°C;and 1°C to 35°C whereas for MM minimum temperature -6°C to +22°C and 1.7°C to 23°C, respectively. For the case of MM evapotranspiration, which is estimated using FAO-Penman-Montheith equation, the Bias and RMSE values vary from -35 mm to +10 mm;and +11 mm to +36 mm, respectively. The variation in the performance level of these models indicates that there is high uncertainty in the GCM outputs. Therefore, to use these GCM models for any climate change studies in the basin, careful selection has to be made.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an...Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.展开更多
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have in...Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications.展开更多
Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experienci...Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua...Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.展开更多
Frozen shoulder(FS),also known as adhesive capsulitis,is a condition that causes contraction and stiffness of the shoulder joint capsule.The main symptoms are per-sistent shoulder pain and a limited range of motion in...Frozen shoulder(FS),also known as adhesive capsulitis,is a condition that causes contraction and stiffness of the shoulder joint capsule.The main symptoms are per-sistent shoulder pain and a limited range of motion in all directions.These symp-toms and poor prognosis affect people's physical health and quality of life.Currently,the specific mechanisms of FS remain unclear,and there is variability in treatment methods and their efficacy.Additionally,the early symptoms of FS are difficult to distinguish from those of other shoulder diseases,complicating early diagnosis and treatment.Therefore,it is necessary to develop and utilize animal models to under-stand the pathogenesis of FS and to explore treatment strategies,providing insights into the prevention and treatment of human FS.This paper reviews the rat models available for FS research,including external immobilization models,surgical internal immobilization models,injection modeling models,and endocrine modeling models.It introduces the basic procedures for these models and compares and analyzes the advantages,disadvantages,and applicability of each modeling method.Finally,our paper summarizes the common methods for evaluating FS rat models.展开更多
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金funded by the Office of the Vice-President for Research and Development of Cebu Technological University.
文摘This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.
基金supported by the Central Government Guiding Local Science and Technology Development Fund Project(No.2024SZY0343)the Joint Research Program for Ecological Conservation and High Quality Development of the Yellow River Basin(No.2022-YRUC-01-050205)+2 种基金the Higher Education Scientific Research Project of Inner Mongolia Autonomous Region(No.NJZZ23078)the project of Inner Mongolia"Prairie Talents"Engineering Innovation Entrepreneurship Talent Team,the Major Projects of Erdos Science and Technology(No.2022EEDSKJZDZX015)the Innovation Team of the Inner Mongolia Academy of Science and Technology(No.CXTD2023-01-016).
文摘Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making.
基金Supported by the National Key Specialty of Traditional Chinese Medicine(Spleen and Stomach Diseases),No.0500004National Natural Science Foundation of China,No.82205104 and No.82104850+1 种基金Hospital Capability Enhancement Project of Xiyuan Hospital,CACMS,No.XYZX0303-07the Fundamental Research Funds for the Central Public Welfare Research Institutes,Excellent Young Scientists Training Program of China Academy of Chinese Medical Sciences,No.ZZ16-YQ-002.
文摘BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.
基金supported by the Natural Science Foundation of Guangdong Province(No.2021B1515120053)Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515140166).
文摘Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation):project ID 431549029-SFB 1451the Marga-und-Walter-Boll-Stiftung(#210-10-15)(to MAR)a stipend from the'Gerok Program'(Faculty of Medicine,University of Cologne,Germany)。
文摘Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.
文摘Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.
基金supported by the Grant PID2021-126715OB-IOO financed by MCIN/AEI/10.13039/501100011033 and"ERDFA way of making Europe"by the Grant PI22CⅢ/00055 funded by Instituto de Salud CarlosⅢ(ISCⅢ)+6 种基金the UFIECPY 398/19(PEJ2018-004965) grant to RGS funded by AEI(Spain)the UFIECPY-396/19(PEJ2018-004961)grant financed by MCIN (Spain)FI23CⅢ/00003 grant funded by ISCⅢ-PFIS Spain) to PMMthe UFIECPY 328/22 (PEJ-2021-TL/BMD-21001) grant to LM financed by CAM (Spain)the grant by CAPES (Coordination for the Improvement of Higher Education Personnel)through the PDSE program (Programa de Doutorado Sanduiche no Exterior)to VSCG financed by MEC (Brazil)
文摘The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.
基金National Natural Science Foundation of China (40233031)
文摘Due to the decrease in grid size associated with the convergence of meridians toward the poles inspherical coordinates, the time steps in many global climate models with finite-difference method are restrictedto be unpleasantly small. To overcome the problem, a reduced grid is introduced to LASG/IAP world oceangeneral circulation models. The reduced grid is implemented successfully in the coarser resolutions versionmodel L30T63 at first. Then, it is carried out in the improved version model LICOM with finer resolutions. Inthe experiment with model L30T63, under time step unchanged though, execution time per single model run isshortened significantly owing to the decrease of grid number and filtering execution in high latitudes. Resultsfrom additional experiments with L30T63 show that the time step of integration can be quadrupled at most inreduced grid with refinement ratio 3. In the experiment with model LICOM and with the model’s original timestep unchanged, the model covered area is extended to the whole globe from its original case with the grid pointof North Pole considered as an isolated island and the results of experiment are shown to be acceptable.
文摘Potential of climate change impact assessment on hydrology and water resources of rivers is increasing from time to time due to its importance for water resources planning and management in the future. In order to carry out climate change impact studies, using General Climate Models (GCM) is a common practice and before using any of these models, it is essential to validate the models for the selected study area. Blue Nile River is one of the most sensitive rivers towards climate change impacts. The main source of Blue Nile River is Lake Tana where the two adjacent tributary rivers, Ribb & Gumera, are located and the main object of this paper is validation of current 15 GCM outputs (IPCC-AR5) over these two rivers using empirical quantile perturbation downscaling technique. The performance of the downscaled outputs of GCMs were evaluated using statistical indicators and graphical techniques for evapotranspiration, rainfall and temperature variables using observed daily meteorological datasets collected from five stations (Addis Zemen, Bahirdar, Debretabor, Woreta and Yifag) for the control period 1971-2000. Analysis results showed that the correlation coefficient of all models for mean monthly (MM) rainfall are 12% - 45%;and the Bias and RMSE -46 mm to +169 mm and 62 mm to 241 mm, respectively. The Bias and RMSE for MM maximum temperature are -2.5°C to +35°C;and 1°C to 35°C whereas for MM minimum temperature -6°C to +22°C and 1.7°C to 23°C, respectively. For the case of MM evapotranspiration, which is estimated using FAO-Penman-Montheith equation, the Bias and RMSE values vary from -35 mm to +10 mm;and +11 mm to +36 mm, respectively. The variation in the performance level of these models indicates that there is high uncertainty in the GCM outputs. Therefore, to use these GCM models for any climate change studies in the basin, careful selection has to be made.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
基金in part supported by the National Natural Science Foundation of China(Grant Nos.42288101,42405147 and 42475054)in part by the China National Postdoctoral Program for Innovative Talents(Grant No.BX20230071)。
文摘Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences.
基金supported in part by National Natural Science Foundation of China(62441605)。
文摘Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple modalities.Despite these achievements,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific accuracy.To address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model co-evolution.First,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge prompting.Second,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge injection.Third,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual learning.We illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various domains.We conclude by outlining future pathways for further advancement and applications.
基金supported by the Brain&Behavior Research Foundation(30233).
文摘Depressive disorder is a chronic,recurring,and potentially life-endangering neuropsychiatric disease.According to a report by the World Health Organization,the global population suffering from depression is experiencing a significant annual increase.Despite its prevalence and considerable impact on people,little is known about its pathogenesis.One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression.Furthermore,the neural circuit mechanism of depression induced by various factors is particularly complex.Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression,a comparison between the neural circuits of depression induced by various factors is essential for its treatment.In this review,we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression,aiming to provide a theoretical basis for depression prevention.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
基金supported by National Natural Science Foundation of China(62376219 and 62006194)Foundational Research Project in Specialized Discipline(Grant No.G2024WD0146)Faculty Construction Project(Grant No.24GH0201148).
文摘Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.
基金National Key R&D Program of China,Grant/Award Number:2021YFC2502100,2023YFC3603404 and 2019YFA0111900The National Natural Science Foundation of China,Grant/Award Number:82072506,82272611 and 92268115+7 种基金The Hunan Provincial Science Fund for Distinguished Young Scholars,Grant/Award Number:2024JJ2089The Hunan Young Talents of Science and Technology,Grant/Award Number:2021RC3025The Provincial Clinical Medical Technology Innovation Project of Hunan,Grant/Award Number:2023SK2024 and 2020SK53709The Provincial Natural Science Foundation of Hunan,Grant/Award Number:2020JJ3060The National Natural Science Foundation of Hunan Province,Grant/Award Number:2023JJ30949The National Clinical Research Center for Geriatric Disorders,Xiangya Hospital,Grant/Award Number:2021KFJJ02 and 2021LNJJ05The Hunan Provincial Innovation Foundation for Postgraduate,Grant/Award Number:CX20230308 and CX20230312The Independent Exploration and Innovation Project for Postgraduate Students of Central South University,Grant/Award Number:2024ZZTS0163。
文摘Frozen shoulder(FS),also known as adhesive capsulitis,is a condition that causes contraction and stiffness of the shoulder joint capsule.The main symptoms are per-sistent shoulder pain and a limited range of motion in all directions.These symp-toms and poor prognosis affect people's physical health and quality of life.Currently,the specific mechanisms of FS remain unclear,and there is variability in treatment methods and their efficacy.Additionally,the early symptoms of FS are difficult to distinguish from those of other shoulder diseases,complicating early diagnosis and treatment.Therefore,it is necessary to develop and utilize animal models to under-stand the pathogenesis of FS and to explore treatment strategies,providing insights into the prevention and treatment of human FS.This paper reviews the rat models available for FS research,including external immobilization models,surgical internal immobilization models,injection modeling models,and endocrine modeling models.It introduces the basic procedures for these models and compares and analyzes the advantages,disadvantages,and applicability of each modeling method.Finally,our paper summarizes the common methods for evaluating FS rat models.