Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an...Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.展开更多
To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise mode...To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.展开更多
In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heati...In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.展开更多
Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant i...Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.展开更多
This study proposes a method for calculating the probability distribution of structural responses at different intensities using the endurance time(ET)method.The results can be used to calculate the fragility curve of...This study proposes a method for calculating the probability distribution of structural responses at different intensities using the endurance time(ET)method.The results can be used to calculate the fragility curve of structural collapse.The ET method involves dynamic analysis of a structure under an intensifying record over time.While conventional ET methods can determine the median of the structural response,they lack the ability to calculate its dispersion.To address this limitation,the present study utilizes ET analysis and single-degree-of-freedom(SDOF)systems to develop a method that considers the record-to-record variability for calculating the probability distribution of structural response.The accuracy of this method is evaluated by comparing it with the incremental dynamic analysis(IDA)method using special moment frames.The results demonstrate that the proposed method achieves a reasonably accurate estimation of dispersion while significantly reducing the computational burden(by approximately 95%)compared to the IDA method.展开更多
This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(S...This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(SDOF)and the experimentally validated Finite Element(FE)methods(LSDYNA).For this purpose,special atten-tion is given to calculating the response of H-shaped steel columns under blast.The damage amount is determined based on the support rotation criterion,which is expressed as a function of their maximum lateral mid-span dis-placement.To account for uncertainties in input parameters and obtain the failure probability,the Monte Carlo simulation(MCS)method is employed,complemented by the Latin Hypercube Sampling(LHS)method to reduce the number of simulations.A parametric analysis is hence performed to examine the effect of several input pa-rameters(including both deterministic and probabilistic parameters)on the probability of column damage as a function of support rotation.First,the MSDOF method confirms its higher accuracy in estimating the probability of column damage due to blast,compared to the conventional SDOF.The collected results also show that un-certainties of several input parameters have significant effects on the column behavior.In particular,geometric parameters(including cross-sectional characteristics,boundary conditions and column length)have major effect on the corresponding column response,in the same way of input blast load parameters and material properties.展开更多
Introduction Frequency-dependent dielectric response is one of the important properties of ferroelectrics,reflecting the polarization response to high-frequency electric fields.Polarizations are closely related to fer...Introduction Frequency-dependent dielectric response is one of the important properties of ferroelectrics,reflecting the polarization response to high-frequency electric fields.Polarizations are closely related to ferroelectric domain structures,such as single domain,which represents the region with homogeneous polarizations direction.Ferroelectrics usually possess complex domain structures with domain walls(DWs)separating adjacent homogeneously polarized domains.DWs have attracted much attention during the past two decades due to their properties and potential for device designing.The related issues include DW motion,nonvolatile memory,topological defects,enhanced susceptibility,enhanced quality factor,low dielectric loss,and others.(Ba0.8,Sr0.2)TiO3(BST0.8)is a ferroelectric usually with multi-domain structures.Previous work identified two typical types of domain walls(DWs),i.e.,90°DWs and 180°DWs.The enhancement of dielectric response in systems with 90°DWs is now well understood,and the behavior of dielectric response in multi-domain systems with 180°DWs remains unclear.Therefore,gaining insights into how 180°DWs affect the dielectric response can clarify the effects in multidomain systems.Methods We performed molecular dynamics simulations using the ALFE-H code with the first-principles-based effective Hamiltonian method to study the BST0.8 system.All the calculations were performed in the NPT ensemble using the Evans-Hoover thermostat,and periodic boundary condition(PBC)along all three directions.To simulate the substrate,a uniform biaxial strain was fixed to the 1.55%in-plane strain.To analyze the multi-domain with different DWs,the simulations started with a self-constructed initial multi-domain polarization configuration.Subsequent 50 ps MD simulation was performed under chosen strains for structural relaxation.In the initial configuration,the magnitude of non-zero components of soft mode on each site was set to 0.1Å,atomic occupations(alloying)were randomized,and unless otherwise specified,all other mode variables were set to zero.The trajectory of local mode averaged over the supercell during MD simulations was extracted to calculate the dielectric response.The 8 ns MD simulations were performed to obtain an autocorrelation function for any time t ranging from 0 to 1 ns by one step of 10 fs.The fast Fourier transformation(FFT)was performed to calculate the dielectric response.Then two uncoupled damped harmonic oscillators(DHOs)were used to fit the data of dielectric response.Results and discussion The dielectric response of single domain at 300 K with the different electric fields along[110]from 0 to 2 MV/cm was computed.The computational results can be well fitted with the model of two uncoupled DHOs.The real and imaginary parts of the predicted dielectric response at each chosen electric field both exhibit two peaks.As the electric field increases,the low-frequency mode with 300 GHz at zero field in the system gradually disappears,and a high-frequency mode of larger than 8 THz appears when electric field is larger than 1 MV/cm.The high frequencies modes of 3 THz at zero filed and 8 THz under 1 MV/cm shift towards higher frequencies as the electric field increases.In other words,the present simulations reveal that it is possible to manipulate the frequency of peaks in dielectric response via changing the magnitude of the external electric field.The dielectric responses of multi-domain with 90°DWs and 180°DWs are further analyzed.According to the experimental PFM results,the multi-domain structures are simulated and the dielectric response through MD simulations is calculated.The analysis of the dielectric response of single domain structure and multi-domain structures shows that the single domain structures exhibit high-frequency peaks at>300 GHz,whereas the multi-domain structures exhibit low-frequency peaks at 8 GHz and 120 GHz for 180°DWs system and at 10 GHz for 90°DWs system,revealing that there exists a low-frequency mode related to collective oscillation of DWs in multi-domain structures.In addition,the frequencies of peaks in multi-domain with DWs are in a gigahertz range,whereas the single domain structure exhibits peaks in a terahertz range.The contribution of DWs to the dielectric response primarily arises from the timescale of DWs motion,such as sliding or breathing,which differs significantly from the high-frequency vibrations of optical phonon modes.The vibrational frequency of DWs is much lower,with relaxation times in the order of nanoseconds,resulting in a response frequency in GHz range,which is far below the terahertz range of optical phonon modes.Therefore,DWs oscillations dominate the dielectric response at a low frequency.Moreover,multi-domain structure with 180°DWs exhibits a unique low frequency mode at 120 GHz,which is significantly different from single domain and 90°DWs system.In other words,multi-domain structures with 180°DWs and 90°DWs exhibit different dielectric responses.There exists a common low-frequency mode related to the oscillations of DWs in BST0.8.Conclusions It was possible to manipulate the frequency of peaks in dielectric response of single domain through changing the magnitude of the external electric field.Domain walls oscillations dominated the dielectric response in a low frequency gigahertz range,whereas the single domain structures exhibited resonant peaks in a terahertz range.Moreover,multi-domain structures with different domain walls in BST0.8 had different dielectric responses,but the both have a same low-frequency mode at 10 GHz related to the domain walls oscillations.The results of this study indicated the dielectric response behaviors of ferroelectrics induced in an external electric field and internal multi-domain configurations and provided the potential mechanisms and guidance for optimizing application performance.展开更多
This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri...This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation.展开更多
Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to th...Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone.展开更多
Purpose–This study aims to design and validate an emergency response method for high-speed railway earthquake early warning(EEW)systems based on the Propagation of Local Undamped Motion(PLUM)principle in order to enh...Purpose–This study aims to design and validate an emergency response method for high-speed railway earthquake early warning(EEW)systems based on the Propagation of Local Undamped Motion(PLUM)principle in order to enhance the timeliness and accuracy of warnings under seismic threats.Design/methodology/approach–A hierarchical architecture of the railway EEW system was adopted,in which self-built stations along the railway serve as the backbone and the national seismic network provides supplementary data.Warning zones were designed along the railway using overlapping trapezoidal layouts to cover seismic stations and reduce inter-regional time delays.Offline replay experiments were conducted using 82 historical earthquake events and records from 61 seismic stations to evaluate the timeliness and accuracy of warning information.Findings–The results indicate that the PLUM-based early warning method can issue emergency response information before destructive seismic waves arrive.Multiple earthquake experiments demonstrated high reliability and stability,with effective detection across different magnitudes and epicentral distances.Furthermore,the trapezoidal overlapping zone design improved regional consistency and significantly reduced missed alerts.Originality/value–This work represents the first systematic application of the PLUM method to high-speed railway EEW in China.By integrating railway operational requirements,the proposed method provides a practical and robust emergency response strategy,offering new insights into seismic risk mitigation for China’s high-speed railways.展开更多
The dynamic response characteristics of scoliosis and kyphosis to vibration are currently unclear.The finite element method(FEM)was employed to study the vibration response of patients with idiopathic scoliosis and ky...The dynamic response characteristics of scoliosis and kyphosis to vibration are currently unclear.The finite element method(FEM)was employed to study the vibration response of patients with idiopathic scoliosis and kyphosis.The objective is to analyze the dynamic characteristics of idiopathic scoliosis and kyphosis using FEM.The finite element model of T1—S1 segments was established and verified using the CT scanning images.The established scoliosis and kyphosis models were verified statistically and dynamically.The finite element software Abaqus was utilized to analyze the mode,harmonic response,and transient dynamics of scoliosis and kyphosis.The first four natural frequencies extracted from modal analysis were 1.34,2.26,4.49 and 17.69 Hz respectively.Notably,the first three natural frequencies decreased with the increase of upper body mass.In harmonic response analysis,the frequency corresponding to the maximum amplitude in x direction was the first order natural frequency,and the frequency corresponding to the maximum amplitude in y and z directions was the second order natural frequency.At the same resonance frequency,the amplitude of the thoracic spine was larger relative to that of the lumbar spine.The time domain results of transient analysis showed that the displacement dynamic response of each segment presented cyclic response characteristics over time.Under 2.26 Hz excitation,the dynamic response of the research object appeared as resonance.The higher the degree of spinal deformity,the greater the fundamental frequency.The first three natural modes of scoliosis and kyphosis contain vibration components in the vertical direction.The second order natural frequency was the most harmful to patients with scoliosis and kyphosis.Under cyclic loading,the deformation of the thoracic cone exceeds that of the lumbar cone.展开更多
Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate ...Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate for actual situations.Although soil exhibits material nonlinearity under earthquake excitation,existing research on the TI medium is limited to soil linearity and neglects the nonlinear response of TI sites.A 2D equivalent linear model for a layered TI half-space subjected to seismic waves is derived in the transformed wave number domain using the exact dynamic stiffness matrix of the TI medium.This study introduces a method for determining the effective shear strain of TI sites under oblique wave incidence,and further describes a systematic study on the effects of TI parameters and soil nonlinearity on site responses.Numerical results indicate that seismic responses of the TI medium significantly differ from those of isotropic sites and that the responses are highly dependent on TI parameters,particularly in nonlinear cases,while also being sensitive to incident angle and excitation intensity.Moreover,the differences in peak acceleration and waveform for various TI materials may also be amplified due to the strong nonlinearity.The study provides valuable insights for improving the accuracy of seismic response analysis in engineering applications.展开更多
In three-dimensional free-bending forming(3D-FBF),the tube is not overly constrained,and the plastic deformation behavior and forming quality of the bent tube are significantly affected by the critical structure of th...In three-dimensional free-bending forming(3D-FBF),the tube is not overly constrained,and the plastic deformation behavior and forming quality of the bent tube are significantly affected by the critical structure of the forming die lining.However,the effects of die-lining structural parameters on the tube quality,and a method to determine the combination of die-lining structural parameters is yet to be devised.This study aims to propose a new framework that allows one to understand the effects of various die-lining structural parameters on tube quality and to propose the best combination of die-lining structural parameters.First,finite-element modeling is performed to simulate 3D-FBF and examine the effects of individual die-lining structures on the quality of tube formation.The simulation results show that the deformation-zone length and die gap are positively correlated with the tube-section distortion and wall-thickness variation,whereas it shows an opposite trend with respect to the bending radius.Additionally,the lining chamfer radius of the bending die and the guide lining chamfer radius minimally affect the tube forming quality.Subsequently,the optimal die-lining structure is obtained using the response-surface method.The tube cross-sectional distortion rate reduced from 2.73 to 2.53%after the die lining is optimized.Additionally,the average inner-wall thickness reduced to 1.06 mm,whereas the average outer-wall thickness increased to 0.97 mm.This paper proposes a method for optimizing the forming-die-lining mechanism and for improving the tube forming quality in 3D-FBF.展开更多
A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a...A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.展开更多
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
The aim of the present study was to optimize the supercritical CO_2 extraction conditions of icariin from Herba Epimedii by response surface method(RSM) and central composite design(CCD).A 3-factor,5-level CCD was use...The aim of the present study was to optimize the supercritical CO_2 extraction conditions of icariin from Herba Epimedii by response surface method(RSM) and central composite design(CCD).A 3-factor,5-level CCD was used for the optimization.Independent variables were extraction temperature,extraction pressure and entrainer flow rate.Dependent variable was yield ratio of icariin from Herba Epimedii.A two-order polynomial equation was fitted to the data.The results showed that the optimum extraction conditions were as follows:extraction temperature 46.5℃,extraction pressure 30.6 MPa,entrainer flow rate 3.3 mL/min.CCD/ RSM is convenient and highly predictive for optimizing the extraction process of icariin from Herba Epimedii.展开更多
A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement ...A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement is obtained by the geometrical relation of the triangle theory. In this application, high field electrostrictive strains of barium titanate/polyurethane elastomer composite materials are measured. The electrostrictive strain is evaluated when the application of an electric field is repeated, and then the electrostrictive coefficient of the sample is obtained. To improve the measuring accuracy, the bilinear interpolation of gray value is used to obtain the sub-pixel gray value. The results are compared with those obtained from the surface fitting algorithm. The experimental results demonstrate that the electrostrictive response of polyurethane increases with the introduction of barium titanate into polyurethane. And by using the DSCM, the measurement of the characteristic of electrostriction can be done quickly and accurately. The DSCM provides an effective tool for the evaluation of electrostrictive response.展开更多
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr...Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos.52088102 and 51879287)National Key Research and Development Program of China (Grant No.2022YFB2602301)。
文摘Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results.
基金co-supported by the National Natural Science Foundation of China(Nos.52405293,52375237)China Postdoctoral Science Foundation(No.2024M754219)Shaanxi Province Postdoctoral Research Project Funding,China。
文摘To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.42102346,42172301).
文摘Magneto-electro-elastic(MEE)materials are widely utilized across various fields due to their multi-field coupling effects.Consequently,investigating the coupling behavior of MEE composite materials is of significant importance.The traditional finite element method(FEM)remains one of the primary approaches for addressing such issues.However,the application of FEM typically necessitates the use of a fine finite element mesh to accurately capture the heterogeneous properties of the materials and meet the required computational precision,which inevitably leads to a reduction in computational efficiency.To enhance the computational accuracy and efficiency of the FEM for heterogeneous multi-field coupling problems,this study presents the coupling magneto-electro-elastic multiscale finite element method(CM-MsFEM)for heterogeneous MEE structures.Unlike the conventional multiscale FEM(MsFEM),the proposed algorithm simultaneously constructs displacement,electric,and magnetic potential multiscale basis functions to address the heterogeneity of the corresponding parameters.The macroscale formulation of CM-MsFEM was derived,and the macroscale/microscale responses of the problems were obtained through up/downscaling calculations.Evaluation using numerical examples analyzing the transient behavior of heterogeneous MEE structures demonstrated that the proposed method outperforms traditional FEM in terms of both accuracy and computational efficiency,making it an appropriate choice for numerically modeling the dynamics of heterogeneous MEE structures.
文摘This study proposes a method for calculating the probability distribution of structural responses at different intensities using the endurance time(ET)method.The results can be used to calculate the fragility curve of structural collapse.The ET method involves dynamic analysis of a structure under an intensifying record over time.While conventional ET methods can determine the median of the structural response,they lack the ability to calculate its dispersion.To address this limitation,the present study utilizes ET analysis and single-degree-of-freedom(SDOF)systems to develop a method that considers the record-to-record variability for calculating the probability distribution of structural response.The accuracy of this method is evaluated by comparing it with the incremental dynamic analysis(IDA)method using special moment frames.The results demonstrate that the proposed method achieves a reasonably accurate estimation of dispersion while significantly reducing the computational burden(by approximately 95%)compared to the IDA method.
文摘This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(SDOF)and the experimentally validated Finite Element(FE)methods(LSDYNA).For this purpose,special atten-tion is given to calculating the response of H-shaped steel columns under blast.The damage amount is determined based on the support rotation criterion,which is expressed as a function of their maximum lateral mid-span dis-placement.To account for uncertainties in input parameters and obtain the failure probability,the Monte Carlo simulation(MCS)method is employed,complemented by the Latin Hypercube Sampling(LHS)method to reduce the number of simulations.A parametric analysis is hence performed to examine the effect of several input pa-rameters(including both deterministic and probabilistic parameters)on the probability of column damage as a function of support rotation.First,the MSDOF method confirms its higher accuracy in estimating the probability of column damage due to blast,compared to the conventional SDOF.The collected results also show that un-certainties of several input parameters have significant effects on the column behavior.In particular,geometric parameters(including cross-sectional characteristics,boundary conditions and column length)have major effect on the corresponding column response,in the same way of input blast load parameters and material properties.
文摘Introduction Frequency-dependent dielectric response is one of the important properties of ferroelectrics,reflecting the polarization response to high-frequency electric fields.Polarizations are closely related to ferroelectric domain structures,such as single domain,which represents the region with homogeneous polarizations direction.Ferroelectrics usually possess complex domain structures with domain walls(DWs)separating adjacent homogeneously polarized domains.DWs have attracted much attention during the past two decades due to their properties and potential for device designing.The related issues include DW motion,nonvolatile memory,topological defects,enhanced susceptibility,enhanced quality factor,low dielectric loss,and others.(Ba0.8,Sr0.2)TiO3(BST0.8)is a ferroelectric usually with multi-domain structures.Previous work identified two typical types of domain walls(DWs),i.e.,90°DWs and 180°DWs.The enhancement of dielectric response in systems with 90°DWs is now well understood,and the behavior of dielectric response in multi-domain systems with 180°DWs remains unclear.Therefore,gaining insights into how 180°DWs affect the dielectric response can clarify the effects in multidomain systems.Methods We performed molecular dynamics simulations using the ALFE-H code with the first-principles-based effective Hamiltonian method to study the BST0.8 system.All the calculations were performed in the NPT ensemble using the Evans-Hoover thermostat,and periodic boundary condition(PBC)along all three directions.To simulate the substrate,a uniform biaxial strain was fixed to the 1.55%in-plane strain.To analyze the multi-domain with different DWs,the simulations started with a self-constructed initial multi-domain polarization configuration.Subsequent 50 ps MD simulation was performed under chosen strains for structural relaxation.In the initial configuration,the magnitude of non-zero components of soft mode on each site was set to 0.1Å,atomic occupations(alloying)were randomized,and unless otherwise specified,all other mode variables were set to zero.The trajectory of local mode averaged over the supercell during MD simulations was extracted to calculate the dielectric response.The 8 ns MD simulations were performed to obtain an autocorrelation function for any time t ranging from 0 to 1 ns by one step of 10 fs.The fast Fourier transformation(FFT)was performed to calculate the dielectric response.Then two uncoupled damped harmonic oscillators(DHOs)were used to fit the data of dielectric response.Results and discussion The dielectric response of single domain at 300 K with the different electric fields along[110]from 0 to 2 MV/cm was computed.The computational results can be well fitted with the model of two uncoupled DHOs.The real and imaginary parts of the predicted dielectric response at each chosen electric field both exhibit two peaks.As the electric field increases,the low-frequency mode with 300 GHz at zero field in the system gradually disappears,and a high-frequency mode of larger than 8 THz appears when electric field is larger than 1 MV/cm.The high frequencies modes of 3 THz at zero filed and 8 THz under 1 MV/cm shift towards higher frequencies as the electric field increases.In other words,the present simulations reveal that it is possible to manipulate the frequency of peaks in dielectric response via changing the magnitude of the external electric field.The dielectric responses of multi-domain with 90°DWs and 180°DWs are further analyzed.According to the experimental PFM results,the multi-domain structures are simulated and the dielectric response through MD simulations is calculated.The analysis of the dielectric response of single domain structure and multi-domain structures shows that the single domain structures exhibit high-frequency peaks at>300 GHz,whereas the multi-domain structures exhibit low-frequency peaks at 8 GHz and 120 GHz for 180°DWs system and at 10 GHz for 90°DWs system,revealing that there exists a low-frequency mode related to collective oscillation of DWs in multi-domain structures.In addition,the frequencies of peaks in multi-domain with DWs are in a gigahertz range,whereas the single domain structure exhibits peaks in a terahertz range.The contribution of DWs to the dielectric response primarily arises from the timescale of DWs motion,such as sliding or breathing,which differs significantly from the high-frequency vibrations of optical phonon modes.The vibrational frequency of DWs is much lower,with relaxation times in the order of nanoseconds,resulting in a response frequency in GHz range,which is far below the terahertz range of optical phonon modes.Therefore,DWs oscillations dominate the dielectric response at a low frequency.Moreover,multi-domain structure with 180°DWs exhibits a unique low frequency mode at 120 GHz,which is significantly different from single domain and 90°DWs system.In other words,multi-domain structures with 180°DWs and 90°DWs exhibit different dielectric responses.There exists a common low-frequency mode related to the oscillations of DWs in BST0.8.Conclusions It was possible to manipulate the frequency of peaks in dielectric response of single domain through changing the magnitude of the external electric field.Domain walls oscillations dominated the dielectric response in a low frequency gigahertz range,whereas the single domain structures exhibited resonant peaks in a terahertz range.Moreover,multi-domain structures with different domain walls in BST0.8 had different dielectric responses,but the both have a same low-frequency mode at 10 GHz related to the domain walls oscillations.The results of this study indicated the dielectric response behaviors of ferroelectrics induced in an external electric field and internal multi-domain configurations and provided the potential mechanisms and guidance for optimizing application performance.
基金the National Natural Science Foundation of China(Grant Nos.52371342,52271338,52101378 and 51979277)。
文摘This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation.
基金support from the National Natural Science Foundation of China(Nos.51504247,52174092,51904290,and 52074259)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the China University of Mining and Technology(CUMT)Open Sharing Fund for Large-scale Instruments and Equipment(No.DYGX-2025-47)is gratefully acknowledged.
文摘Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone.
文摘Purpose–This study aims to design and validate an emergency response method for high-speed railway earthquake early warning(EEW)systems based on the Propagation of Local Undamped Motion(PLUM)principle in order to enhance the timeliness and accuracy of warnings under seismic threats.Design/methodology/approach–A hierarchical architecture of the railway EEW system was adopted,in which self-built stations along the railway serve as the backbone and the national seismic network provides supplementary data.Warning zones were designed along the railway using overlapping trapezoidal layouts to cover seismic stations and reduce inter-regional time delays.Offline replay experiments were conducted using 82 historical earthquake events and records from 61 seismic stations to evaluate the timeliness and accuracy of warning information.Findings–The results indicate that the PLUM-based early warning method can issue emergency response information before destructive seismic waves arrive.Multiple earthquake experiments demonstrated high reliability and stability,with effective detection across different magnitudes and epicentral distances.Furthermore,the trapezoidal overlapping zone design improved regional consistency and significantly reduced missed alerts.Originality/value–This work represents the first systematic application of the PLUM method to high-speed railway EEW in China.By integrating railway operational requirements,the proposed method provides a practical and robust emergency response strategy,offering new insights into seismic risk mitigation for China’s high-speed railways.
基金the National Natural Science Foundation of China(No.32260235)。
文摘The dynamic response characteristics of scoliosis and kyphosis to vibration are currently unclear.The finite element method(FEM)was employed to study the vibration response of patients with idiopathic scoliosis and kyphosis.The objective is to analyze the dynamic characteristics of idiopathic scoliosis and kyphosis using FEM.The finite element model of T1—S1 segments was established and verified using the CT scanning images.The established scoliosis and kyphosis models were verified statistically and dynamically.The finite element software Abaqus was utilized to analyze the mode,harmonic response,and transient dynamics of scoliosis and kyphosis.The first four natural frequencies extracted from modal analysis were 1.34,2.26,4.49 and 17.69 Hz respectively.Notably,the first three natural frequencies decreased with the increase of upper body mass.In harmonic response analysis,the frequency corresponding to the maximum amplitude in x direction was the first order natural frequency,and the frequency corresponding to the maximum amplitude in y and z directions was the second order natural frequency.At the same resonance frequency,the amplitude of the thoracic spine was larger relative to that of the lumbar spine.The time domain results of transient analysis showed that the displacement dynamic response of each segment presented cyclic response characteristics over time.Under 2.26 Hz excitation,the dynamic response of the research object appeared as resonance.The higher the degree of spinal deformity,the greater the fundamental frequency.The first three natural modes of scoliosis and kyphosis contain vibration components in the vertical direction.The second order natural frequency was the most harmful to patients with scoliosis and kyphosis.Under cyclic loading,the deformation of the thoracic cone exceeds that of the lumbar cone.
基金National Natural Science Foundation of China under Grant No.U2139208。
文摘Natural soil generally exhibits significant transverse isotropy(TI)due to weathering and sedimentation,meaning that horizontal moduli differ from their vertical counterpart.The TI mechanical model is more appropriate for actual situations.Although soil exhibits material nonlinearity under earthquake excitation,existing research on the TI medium is limited to soil linearity and neglects the nonlinear response of TI sites.A 2D equivalent linear model for a layered TI half-space subjected to seismic waves is derived in the transformed wave number domain using the exact dynamic stiffness matrix of the TI medium.This study introduces a method for determining the effective shear strain of TI sites under oblique wave incidence,and further describes a systematic study on the effects of TI parameters and soil nonlinearity on site responses.Numerical results indicate that seismic responses of the TI medium significantly differ from those of isotropic sites and that the responses are highly dependent on TI parameters,particularly in nonlinear cases,while also being sensitive to incident angle and excitation intensity.Moreover,the differences in peak acceleration and waveform for various TI materials may also be amplified due to the strong nonlinearity.The study provides valuable insights for improving the accuracy of seismic response analysis in engineering applications.
基金Supported by Open Fund of Jiangsu Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of China(Grant No.ZK21-05-04)National Natural Science Foundation of China(Grant Nos.52105360,52175328)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.NS2022061)Prince Sattam bin Abdulaziz University of Saudi Arabia(Grant No.PSAU/2024/R/1446).
文摘In three-dimensional free-bending forming(3D-FBF),the tube is not overly constrained,and the plastic deformation behavior and forming quality of the bent tube are significantly affected by the critical structure of the forming die lining.However,the effects of die-lining structural parameters on the tube quality,and a method to determine the combination of die-lining structural parameters is yet to be devised.This study aims to propose a new framework that allows one to understand the effects of various die-lining structural parameters on tube quality and to propose the best combination of die-lining structural parameters.First,finite-element modeling is performed to simulate 3D-FBF and examine the effects of individual die-lining structures on the quality of tube formation.The simulation results show that the deformation-zone length and die gap are positively correlated with the tube-section distortion and wall-thickness variation,whereas it shows an opposite trend with respect to the bending radius.Additionally,the lining chamfer radius of the bending die and the guide lining chamfer radius minimally affect the tube forming quality.Subsequently,the optimal die-lining structure is obtained using the response-surface method.The tube cross-sectional distortion rate reduced from 2.73 to 2.53%after the die lining is optimized.Additionally,the average inner-wall thickness reduced to 1.06 mm,whereas the average outer-wall thickness increased to 0.97 mm.This paper proposes a method for optimizing the forming-die-lining mechanism and for improving the tube forming quality in 3D-FBF.
基金supported by Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration(Grant Nos.2021B06,2021C05)Heilongjiang Natural Science Foundation Joint Guidance Project(Grant No.LH2021E122).
文摘A coupled numerical calculation method combining smooth particle hydrodynamics(SPH)and the finite element method(FEM)was implemented to investigate the seismic response of horizontal storage tanks.Anumericalmodel of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method.The stored liquid was discretized using SPH particles,while the tank and supports were discretized using the FEM.The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method.Then,the numerical simulation results were compared and analyzed against seismic simulation shaking table test data to validate the method.Subsequently,a series of numerical models,considering different liquid storage volumes and seismic effects,were constructed to obtain time history data of base shear and top center displacement,which revealed the seismic performance of horizontal storage tanks.Numerical simulation results and experimental data showed good agreement,with an error rate of less than 18.85%.And this conformity signifies the rationality of the SPH-FEM coupling method.The base shear and top center displacement values obtained by the coupled SPH-FEM method were only 53.3% to 69.1% of those calculated by the equivalent mass method employed in the current code.As the stored liquid volume increased,the seismic response of the horizontal storage tank exhibited a gradual upward trend,with the seismic response increasing from 73% to 388% for every 35% increase in stored liquid volume.The maximum von Mises stress of the tank and the supports remained below the steel yield strength during the earthquake.The coupled SPH-FEM method holds certain advantages in studying the seismic problems of tanks with complex structural forms,particularly due to the representation of the flow field distribution during earthquakes by involving reservoir fluid participation.
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
文摘The aim of the present study was to optimize the supercritical CO_2 extraction conditions of icariin from Herba Epimedii by response surface method(RSM) and central composite design(CCD).A 3-factor,5-level CCD was used for the optimization.Independent variables were extraction temperature,extraction pressure and entrainer flow rate.Dependent variable was yield ratio of icariin from Herba Epimedii.A two-order polynomial equation was fitted to the data.The results showed that the optimum extraction conditions were as follows:extraction temperature 46.5℃,extraction pressure 30.6 MPa,entrainer flow rate 3.3 mL/min.CCD/ RSM is convenient and highly predictive for optimizing the extraction process of icariin from Herba Epimedii.
基金Foundation items:The National Natural Science Foundation of China(No.10472026)the Natural Science Foundation of Jiangsu Province(No.BK2003063).
文摘A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement is obtained by the geometrical relation of the triangle theory. In this application, high field electrostrictive strains of barium titanate/polyurethane elastomer composite materials are measured. The electrostrictive strain is evaluated when the application of an electric field is repeated, and then the electrostrictive coefficient of the sample is obtained. To improve the measuring accuracy, the bilinear interpolation of gray value is used to obtain the sub-pixel gray value. The results are compared with those obtained from the surface fitting algorithm. The experimental results demonstrate that the electrostrictive response of polyurethane increases with the introduction of barium titanate into polyurethane. And by using the DSCM, the measurement of the characteristic of electrostriction can be done quickly and accurately. The DSCM provides an effective tool for the evaluation of electrostrictive response.
基金supported by the National Natural Science Foundation of China(Grant No.51579193)the Science and Technology Planning Project of Guizhou Province(Grant No.[2016]1154)
文摘Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.