Studying the topology of infrastructure communication networks(e.g., the Internet) has become a means to understand and develop complex systems. Therefore, investigating the evolution of Internet network topology migh...Studying the topology of infrastructure communication networks(e.g., the Internet) has become a means to understand and develop complex systems. Therefore, investigating the evolution of Internet network topology might elucidate disciplines governing the dynamic process of complex systems. It may also contribute to a more intelligent communication network framework based on its autonomous behavior. In this paper, the Internet Autonomous Systems(ASes) topology from 1998 to 2013 was studied by deconstructing and analysing topological entities on three different scales(i.e., nodes,edges and 3 network components: single-edge component M1, binary component M2 and triangle component M3). The results indicate that: a) 95% of the Internet edges are internal edges(as opposed to external and boundary edges); b) the Internet network consists mainly of internal components, particularly M2 internal components; c) in most cases, a node initially connects with multiple nodes to form an M2 component to take part in the network; d) the Internet network evolves to lower entropy. Furthermore, we find that, as a complex system, the evolution of the Internet exhibits a behavioral series,which is similar to the biological phenomena concerned with the study on metabolism and replication. To the best of our knowledge, this is the first study of the evolution of the Internet network through analysis of dynamic features of its nodes,edges and components, and therefore our study represents an innovative approach to the subject.展开更多
A surge number of models has been proposed to model the Internet in the past decades. However, the issue on which models are better to model the Internet has still remained a problem. By analysing the evolving dynamic...A surge number of models has been proposed to model the Internet in the past decades. However, the issue on which models are better to model the Internet has still remained a problem. By analysing the evolving dynamics of the Internet, we suggest that at the autonomous system (AS) level, a suitable Internet model, should at least be heterogeneous and have a linearly growing mechanism. More importantly, we show that the roles of topological characteristics in evaluating and differentiating Internet models are apparently over-estimated from an engineering perspective. Also, we find that an assortative network is not necessarily more robust than a disassortative network and that a smaller average shortest path length does not necessarily mean a higher robustness, which is different from the previous observations. Our analytic results are helpful not only for the Internet, but also for other general complex networks.展开更多
Our current understanding about the AS level topology of the Internet is based on measurements and inductive-type models which set up rules describing the behavior (node and edge dynamics) of the individual ASes and...Our current understanding about the AS level topology of the Internet is based on measurements and inductive-type models which set up rules describing the behavior (node and edge dynamics) of the individual ASes and generalize the consequences of these individual actions for the complete AS ecosystem using induction. In this paper we suggest a third, deductive approach in which we have premises for the whole AS system and the consequences of these premises are determined through deductive reasoning. We show that such a deductive approach can give complementary insights into the topological properties of the AS graph. While inductive models can mostly reflect high level statistics (e.g., degree distribution, clustering, diameter), deductive reasoning can identify omnipresent subgraphs and peering likelihood. We also propose a model, called YEAS, incorporating our deductive analytical findings that produces topologies contain both traditional and novel metrics for the AS level Internet.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61671142)
文摘Studying the topology of infrastructure communication networks(e.g., the Internet) has become a means to understand and develop complex systems. Therefore, investigating the evolution of Internet network topology might elucidate disciplines governing the dynamic process of complex systems. It may also contribute to a more intelligent communication network framework based on its autonomous behavior. In this paper, the Internet Autonomous Systems(ASes) topology from 1998 to 2013 was studied by deconstructing and analysing topological entities on three different scales(i.e., nodes,edges and 3 network components: single-edge component M1, binary component M2 and triangle component M3). The results indicate that: a) 95% of the Internet edges are internal edges(as opposed to external and boundary edges); b) the Internet network consists mainly of internal components, particularly M2 internal components; c) in most cases, a node initially connects with multiple nodes to form an M2 component to take part in the network; d) the Internet network evolves to lower entropy. Furthermore, we find that, as a complex system, the evolution of the Internet exhibits a behavioral series,which is similar to the biological phenomena concerned with the study on metabolism and replication. To the best of our knowledge, this is the first study of the evolution of the Internet network through analysis of dynamic features of its nodes,edges and components, and therefore our study represents an innovative approach to the subject.
基金supported by the National Natural Science Foundation of China (Grant Nos.60704045 and 60804012)the Fundamental Research Funds for the Central Universities (Grant No.09Lgpy57)
文摘A surge number of models has been proposed to model the Internet in the past decades. However, the issue on which models are better to model the Internet has still remained a problem. By analysing the evolving dynamics of the Internet, we suggest that at the autonomous system (AS) level, a suitable Internet model, should at least be heterogeneous and have a linearly growing mechanism. More importantly, we show that the roles of topological characteristics in evaluating and differentiating Internet models are apparently over-estimated from an engineering perspective. Also, we find that an assortative network is not necessarily more robust than a disassortative network and that a smaller average shortest path length does not necessarily mean a higher robustness, which is different from the previous observations. Our analytic results are helpful not only for the Internet, but also for other general complex networks.
基金supported by Ericsson and partially supported by the Hungarian Scientific Research Fund(Grant No.OTKA 108947)
文摘Our current understanding about the AS level topology of the Internet is based on measurements and inductive-type models which set up rules describing the behavior (node and edge dynamics) of the individual ASes and generalize the consequences of these individual actions for the complete AS ecosystem using induction. In this paper we suggest a third, deductive approach in which we have premises for the whole AS system and the consequences of these premises are determined through deductive reasoning. We show that such a deductive approach can give complementary insights into the topological properties of the AS graph. While inductive models can mostly reflect high level statistics (e.g., degree distribution, clustering, diameter), deductive reasoning can identify omnipresent subgraphs and peering likelihood. We also propose a model, called YEAS, incorporating our deductive analytical findings that produces topologies contain both traditional and novel metrics for the AS level Internet.