This article investigates virtual reality (VR)-based teleoperation with robustness against modeling errors. VR technology is an effective way to overcome the large time delay during space robot teleoperation. However,...This article investigates virtual reality (VR)-based teleoperation with robustness against modeling errors. VR technology is an effective way to overcome the large time delay during space robot teleoperation. However, it depends highly on the accuracy of model. Model errors between the virtual and real environment exist inevitably. The existing way to deal with the problem is by means of either model matching or robot compliance control. As distinct from the existing methods, this article tries to combine m...展开更多
Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and...Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view.展开更多
Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative i...Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.展开更多
The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination ...The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.展开更多
In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error m...In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.展开更多
Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also...Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data.展开更多
Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its tes...Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.展开更多
Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining qualit...Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining quality of manufactured parts,it has been a popular topic for academic and industrial research for many years.A great deal of research work has been carried out since the 1970s for solving the problem and improving the machining accuracy.Researchers have studied how to measure,detect,model,identify,reduce,and compensate the geometric errors.This paper presents a thorough review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to geometric errors.Recent advances in measuring the geometrical errors of machine tools are summarized,and different kinds of error identification methods of translational axes and rotation axes are illustrated respectively.Besides,volumetric geometric error modeling,tracing,and compensation techniques for five-axis machine tools are emphatically introduced.Finally,research challenges in order to improve the volumetric accuracy of machine tools are also highlighted.展开更多
This paper proposes an automatic algorithm to determine the properties of stochastic processes and their parameters for inertial error. The proposed approach is based on a recently developed method called the generali...This paper proposes an automatic algorithm to determine the properties of stochastic processes and their parameters for inertial error. The proposed approach is based on a recently developed method called the generalized method of wavelet moments (GMWM), whose estimator was proven to be consistent and asymptotically normally distributed. This algorithm is suitable mainly (but not only) for the combination of several stochastic processes, where the model identification and parameter estimation are quite difficult for the traditional methods, such as the Allan variance and the power spectral density analysis. This algorithm further explores the complete stochastic error models and the candidate model ranking criterion to realize automatic model identification and determination. The best model is selected by making the trade-off between the model accuracy and the model complexity. The validation of this approach is verified by practical examples of model selection for MEMS-IMUs (micro-electro-mechanical system inertial measurement units) in varying dynamic conditions.展开更多
By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (...By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.展开更多
Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance ...Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.展开更多
Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was...Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models.展开更多
In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance c...In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance components.However,there is still no related research in the mixed additive and multiplicative random error model(MAMREM).Based on the MAMREM,this paper applies the nonnegative least squares variance component estimation(NNLS-VCE)algorithm to this model.The correlation formula and iterative algorithm of NNLS-VCE for MAMREM are derived.The problem of negative variance in VCE for MAMREM is solved.This paper uses the digital simulation example and the Digital Terrain Mode(DTM)to prove the proposed algorithm's validity.The experimental results demonstrated that the proposed algorithm can effectively correct the VCE in MAMREM when there is a negative VCE.展开更多
Runoff observation uncertainty is a key unsolved issue in the hydrology community.Existing studies mainly focused on observation uncertainty sources and their impacts on simulation performance,but the impacts on chang...Runoff observation uncertainty is a key unsolved issue in the hydrology community.Existing studies mainly focused on observation uncertainty sources and their impacts on simulation performance,but the impacts on changes of flow regime characteristics remained rare.This study detects temporal changes in 16 flow regime metrics from five main components(i.e.,magnitude,frequency of events,variability,duration,and timing),and evaluates the effects of observation uncertainty on trends of flow regime metrics by adopting a normal distribution error model and using uncertainty width,significant change rate of slopes,coefficient of variation,and degree of deviation.The daily runoff series from 1971 to 2020 at five hydrological stations(i.e.,Huangheyan,Tangnaihai,and Lanzhou in the Yellow River Source Region,Xianyang in the Weihe River Catchment,and Heishiguan in the Yiluo River Catchment)in the water conservation zone of Yellow River are collected for our study.Results showed that:(1)Flow regimes showed significant increases in the low flow magnitude,and significant decreases in the high and average flow magnitude,variability and duration at all the five stations.The magnitude,variability and duration metrics decreased significantly,and the frequency metrics increased significantly at Heishiguan.The low flow magnitude and timing metrics increased significantly,while the high flow magnitude,frequency and variability metrics decreased significantly at Xianyang.The low flow magnitude and high flow timing metrics increased significantly,while the low flow frequency,high flow magnitude and variability metrics decreased significantly in the Yellow River Source Region.(2)Observation uncertainty remarkably impacted the changes of 28.75% of total flow regime metrics at all the stations.The trends of 11.25% of total metrics changed from significance to insignificance,while those of 17.5% of total metrics changed from insignificance to significance.For the rest metrics,the trends remained the same,i.e.,significant(18.75%)and insignificant(52.50%)trends.(3)Observation uncertainty had the greatest impacts on the frequency metrics,especially at Xianyang,followed by duration,variability,timing and magnitude metrics.展开更多
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th...Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.展开更多
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parall...Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.展开更多
Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea...Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.展开更多
This research concerns a novel attitude stabilization structure for a ducted-fan aerial robot to work against modeling error and strong external transient disturbance,and it focuses on two main control targets:modelin...This research concerns a novel attitude stabilization structure for a ducted-fan aerial robot to work against modeling error and strong external transient disturbance,and it focuses on two main control targets:modeling error compensation,and the improvement of disturbance resistance along the rolling channel.For the first research objective,we proposed an adaptive nominal controller with the reconfigurable control law design based on the estimation of the modeling error found in the closed-loop.Results of simulations and corresponding flight tests verified that the proposed adaptive control structure is robust against both constant and time-varying modeling error.For the other research objective,a SAC(Stability Augmentation Control)structure was devised based on the CMG(Control Moment Gyroscope)theory in order to provide extra moment which effectively withstands the transient disturbance beyond the CDG(Critical Disturbance Gain).Furthermore,we studied the corresponding controller for the SAC via the SMC(sliding mode control)theory,while the working mechanism and performance of the SAC were verified through a specially devised prototype.展开更多
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo...Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.展开更多
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also...The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.展开更多
基金National Natural Science Foundation of China (60675054)National High-Tech Research and Development Program (2006AA04Z228)"111" Project (B07018)
文摘This article investigates virtual reality (VR)-based teleoperation with robustness against modeling errors. VR technology is an effective way to overcome the large time delay during space robot teleoperation. However, it depends highly on the accuracy of model. Model errors between the virtual and real environment exist inevitably. The existing way to deal with the problem is by means of either model matching or robot compliance control. As distinct from the existing methods, this article tries to combine m...
基金Project(61201381)supported by the National Nature Science Foundation of ChinaProject(YP12JJ202057)supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view.
基金Project(61201381) supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057) supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.
文摘The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.
基金Projects(2012ZX04010-011,2009ZX02037-02) supported by the Key National Science and Technology Project of China
文摘In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable.
基金National Natural Science Foundation of China(Nos.42071372,42221002)。
文摘Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data.
基金Project(2014E00468R)supported by Technological Innovation Fund of Aviation Industry Corporation of China
文摘Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.
基金supported by the National Natural Science Foundation of China(Nos.52005413,52022082)Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JM-054)the Fundamental Research Funds for the Central Universities(No.D5000220135)。
文摘Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining quality of manufactured parts,it has been a popular topic for academic and industrial research for many years.A great deal of research work has been carried out since the 1970s for solving the problem and improving the machining accuracy.Researchers have studied how to measure,detect,model,identify,reduce,and compensate the geometric errors.This paper presents a thorough review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to geometric errors.Recent advances in measuring the geometrical errors of machine tools are summarized,and different kinds of error identification methods of translational axes and rotation axes are illustrated respectively.Besides,volumetric geometric error modeling,tracing,and compensation techniques for five-axis machine tools are emphatically introduced.Finally,research challenges in order to improve the volumetric accuracy of machine tools are also highlighted.
基金supported by the National Science Foundation of China(Nos.42274037,41874034)the Beijing Natural Science Foundation(No.4202041)the National Key Research and Development Program of China(No.2020YFB0505804).
文摘This paper proposes an automatic algorithm to determine the properties of stochastic processes and their parameters for inertial error. The proposed approach is based on a recently developed method called the generalized method of wavelet moments (GMWM), whose estimator was proven to be consistent and asymptotically normally distributed. This algorithm is suitable mainly (but not only) for the combination of several stochastic processes, where the model identification and parameter estimation are quite difficult for the traditional methods, such as the Allan variance and the power spectral density analysis. This algorithm further explores the complete stochastic error models and the candidate model ranking criterion to realize automatic model identification and determination. The best model is selected by making the trade-off between the model accuracy and the model complexity. The validation of this approach is verified by practical examples of model selection for MEMS-IMUs (micro-electro-mechanical system inertial measurement units) in varying dynamic conditions.
基金National Natural Science Foundation of China(No.51275486)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20111420110005)
文摘By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.
基金The MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support programsupervised by the NIPA(National ITIndustry Promotion Agency)(NIPA-2012-C1090-1221-0010)TheMKE,Korea,under the Human Resources Development Programfor Convergence Robot Specialists support programsu-pervised by the NIPA(NIPA-2012-H1502-12-1002)Basic Science Research Program through the NRF funded by the MEST(2011-0025980)and MEST(2012-0005487)
文摘Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242213,U2142213,42305167,42175105)。
文摘Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models.
基金supported by the National Natural Science Foundation of China(No.42174011)。
文摘In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance components.However,there is still no related research in the mixed additive and multiplicative random error model(MAMREM).Based on the MAMREM,this paper applies the nonnegative least squares variance component estimation(NNLS-VCE)algorithm to this model.The correlation formula and iterative algorithm of NNLS-VCE for MAMREM are derived.The problem of negative variance in VCE for MAMREM is solved.This paper uses the digital simulation example and the Digital Terrain Mode(DTM)to prove the proposed algorithm's validity.The experimental results demonstrated that the proposed algorithm can effectively correct the VCE in MAMREM when there is a negative VCE.
基金National Key Research and Development Program of China,No.2021YFC3201102National Natural Science Foundation of China,No.42071041,No.42171047。
文摘Runoff observation uncertainty is a key unsolved issue in the hydrology community.Existing studies mainly focused on observation uncertainty sources and their impacts on simulation performance,but the impacts on changes of flow regime characteristics remained rare.This study detects temporal changes in 16 flow regime metrics from five main components(i.e.,magnitude,frequency of events,variability,duration,and timing),and evaluates the effects of observation uncertainty on trends of flow regime metrics by adopting a normal distribution error model and using uncertainty width,significant change rate of slopes,coefficient of variation,and degree of deviation.The daily runoff series from 1971 to 2020 at five hydrological stations(i.e.,Huangheyan,Tangnaihai,and Lanzhou in the Yellow River Source Region,Xianyang in the Weihe River Catchment,and Heishiguan in the Yiluo River Catchment)in the water conservation zone of Yellow River are collected for our study.Results showed that:(1)Flow regimes showed significant increases in the low flow magnitude,and significant decreases in the high and average flow magnitude,variability and duration at all the five stations.The magnitude,variability and duration metrics decreased significantly,and the frequency metrics increased significantly at Heishiguan.The low flow magnitude and timing metrics increased significantly,while the high flow magnitude,frequency and variability metrics decreased significantly at Xianyang.The low flow magnitude and high flow timing metrics increased significantly,while the low flow frequency,high flow magnitude and variability metrics decreased significantly in the Yellow River Source Region.(2)Observation uncertainty remarkably impacted the changes of 28.75% of total flow regime metrics at all the stations.The trends of 11.25% of total metrics changed from significance to insignificance,while those of 17.5% of total metrics changed from insignificance to significance.For the rest metrics,the trends remained the same,i.e.,significant(18.75%)and insignificant(52.50%)trends.(3)Observation uncertainty had the greatest impacts on the frequency metrics,especially at Xianyang,followed by duration,variability,timing and magnitude metrics.
基金supported by the Key R&D Program of Zhejiang Province(Nos.2023C01166 and 2024SJCZX0046)the Zhejiang Provincial Natural Science Foundation of China(Nos.LDT23E05013E05 and LD24E050009)the Natural Science Foundation of Ningbo(No.2021J150),China.
文摘Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.
基金Supported by National Natural Science Foundation of China(Grant No.51305222)National Key Scientific and Technological Program of China(Grant No.2013ZX04001-021)
文摘Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error’s influence on the moving platform’s pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
基金Supported by National Natural Science Foundation of China(Grant No.51305244)Shandong Provincal Natural Science Foundation of China(Grant No.ZR2013EEL015)
文摘Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
基金co-supported by the National Key Research and Development Program of China(No.2020YFC1512500)the National Natural Science Foundation of Chongqing,China(No.cstc2020jcyj-msxm3857)。
文摘This research concerns a novel attitude stabilization structure for a ducted-fan aerial robot to work against modeling error and strong external transient disturbance,and it focuses on two main control targets:modeling error compensation,and the improvement of disturbance resistance along the rolling channel.For the first research objective,we proposed an adaptive nominal controller with the reconfigurable control law design based on the estimation of the modeling error found in the closed-loop.Results of simulations and corresponding flight tests verified that the proposed adaptive control structure is robust against both constant and time-varying modeling error.For the other research objective,a SAC(Stability Augmentation Control)structure was devised based on the CMG(Control Moment Gyroscope)theory in order to provide extra moment which effectively withstands the transient disturbance beyond the CDG(Critical Disturbance Gain).Furthermore,we studied the corresponding controller for the SAC via the SMC(sliding mode control)theory,while the working mechanism and performance of the SAC were verified through a specially devised prototype.
基金supported by the National Security Major Basic Research Project of China (973-61334).
文摘Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.
基金Project supported by National Natural Science Foundation of China(No. 50675199)the Science and Technology Project of Zhejiang Province (No. 2006C11067), China
文摘The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.