Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study comp...Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data.展开更多
Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while...Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.展开更多
A tablet consisting of direct-acting antiviral agents,ledipasvir(a NS5 A protein inhibitor) and sofosbuvir(a NS5 B polymerase inhibitor),is the first fixed-dose preparation used in the antiviral therapy of hepatit...A tablet consisting of direct-acting antiviral agents,ledipasvir(a NS5 A protein inhibitor) and sofosbuvir(a NS5 B polymerase inhibitor),is the first fixed-dose preparation used in the antiviral therapy of hepatitis C.A model-based meta-analysis of ledipasvir and GS331007,the primary metabolite of sofosbuvir,enabled the integration of pharmacokinetic(PK) information from separate clinical trials and the quantitative characterization of the population pharmacokinetics of these two drugs.A systematic publication search was conducted for the clinical studies of ledipasvir and sofosbuvir.A total of 401 arm-level aggregate concentrations of GS331007 and 188 concentrations of ledipasvir were used for PK modeling.A two-compartment disposition model was used for both ledipasvir and GS331007.Zero-order absorption was applied for ledipasvir PK modeling,and a combined zero- and first-order absorption was used for the modeling of GS331007.Absorption lag was observed in concentration-time profiles of both ledipasvir and GS331007.To aid the development of direct-acting antiviral drugs,our established PK models provided a basis for the further PK-viral kinetic studies of ledipasvir and sofosbuvir.展开更多
The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount o...The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.展开更多
This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the developmen...This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes design- based and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data.We review studies on large-area forest surveys based on model-assisted, model- based, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters.展开更多
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
Robustness testing for safety-critical embedded software is still a challenge in its nascent stages. In this paper, we propose a practical methodology and implement an environment by employing model-based robustness t...Robustness testing for safety-critical embedded software is still a challenge in its nascent stages. In this paper, we propose a practical methodology and implement an environment by employing model-based robustness testing for embedded software systems. It is a system-level black-box testing approach in which the fault behaviors of embedded software is triggered with the aid of modelbased fault injection by the support of an executable model-driven hardware-in-loop (HIL) testing environment. The prototype implementation of the robustness testing environment based on the proposed approach is experimentally discussed and illustrated by industrial case studies based on several avionics-embedded software systems. The results show that our proposed and implemented robustness testing method and environment are effective to find more bugs, and reduce burdens of testing engineers to enhance efficiency of testing tasks, especially for testing complex embedded systems.展开更多
In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for ma...In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors.展开更多
This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack ...This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack propagation in fuselage panels where the model parameters are unknown and the crack propagation is affected by different types of uncertainties. The coupled method is composed of two steps. The first step employs EKF to estimate the unknown model parameters and the current damage state. In the second step, the proposed efficient linearization method is applied to compute analytically the statistical distribution of the damage evolution path in some future time. A numerical case study is implemented to evaluate the performance of the proposed method. The results show that the coupled EKF-linearization method provides satisfactory results: the EKF algorithm well identifies the model parameters, and the linearization method gives comparable prediction results to Monte Carlo(MC) method while leading to very significant computational cost saving. The proposed prognostics method for fatigue crack growth can be used for developing predictive maintenance strategy for an aircraft fleet, in which case, the computational cost saving is significantly meaningful.展开更多
In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted a...In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.展开更多
This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controlle...This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system; an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.展开更多
We design a regulation-triggered adaptive controller for robot manipulators to efficiently estimate unknown parameters and to achieve asymptotic stability in the presence of coupled uncertainties.Robot manipulators ar...We design a regulation-triggered adaptive controller for robot manipulators to efficiently estimate unknown parameters and to achieve asymptotic stability in the presence of coupled uncertainties.Robot manipulators are widely used in telemanipulation systems where they are subject to model and environmental uncertainties.Using conventional control algorithms on such systems can cause not only poor control performance,but also expensive computational costs and catastrophic instabilities.Therefore,system uncertainties need to be estimated through designing a computationally efficient adaptive control law.We focus on robot manipulators as an example of a highly nonlinear system.As a case study,a 2-DOF manipulator subject to four parametric uncertainties is investigated.First,the dynamic equations of the manipulator are derived,and the corresponding regressor matrix is constructed for the unknown parameters.For a general nonlinear system,a theorem is presented to guarantee the asymptotic stability of the system and the convergence of parameters'estimations.Finally,simulation results are discussed for a two-link manipulator,and the performance of the proposed scheme is thoroughly evaluated.展开更多
This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of ...This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.展开更多
Testing is an integral part of software development.Current fastpaced system developments have rendered traditional testing techniques obsolete.Therefore,automated testing techniques are needed to adapt to such system...Testing is an integral part of software development.Current fastpaced system developments have rendered traditional testing techniques obsolete.Therefore,automated testing techniques are needed to adapt to such system developments speed.Model-based testing(MBT)is a technique that uses system models to generate and execute test cases automatically.It was identified that the test data generation(TDG)in many existing model-based test case generation(MB-TCG)approaches were still manual.An automatic and effective TDG can further reduce testing cost while detecting more faults.This study proposes an automated TDG approach in MB-TCG using the extended finite state machine model(EFSM).The proposed approach integrates MBT with combinatorial testing.The information available in an EFSM model and the boundary value analysis strategy are used to automate the domain input classifications which were done manually by the existing approach.The results showed that the proposed approach was able to detect 6.62 percent more faults than the conventionalMB-TCG but at the same time generated 43 more tests.The proposed approach effectively detects faults,but a further treatment to the generated tests such as test case prioritization should be done to increase the effectiveness and efficiency of testing.展开更多
Centralized storage and identity identification methods pose many risks,including hacker attacks,data misuse,and single points of failure.Additionally,existing centralized identity management methods face interoperabi...Centralized storage and identity identification methods pose many risks,including hacker attacks,data misuse,and single points of failure.Additionally,existing centralized identity management methods face interoperability issues and rely on a single identity provider,leaving users without control over their identities.Therefore,this paper proposes a mechanism for identity identification and data sharing based on decentralized identifiers.The scheme utilizes blockchain technology to store the identifiers and data hashed on the chain to ensure permanent identity recognition and data integrity.Data is stored on InterPlanetary File System(IPFS)to avoid the risk of single points of failure and to enhance data persistence and availability.At the same time,compliance with World Wide Web Consortium(W3C)standards for decentralized identifiers and verifiable credentials increases the mechanism’s scalability and interoperability.展开更多
The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the ca...The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the case of sensor/actuator failures.The method uses model-based tracking concept to relax the demand on sensor data.The condition for successful operation of the stated scheme is derived,and the concept is demonstrated through simulation by applying it to the model of microtron,transport line-1 and booster of indus accelerator.The results show that this approach is very effective in transport line control during sensor/actuator failures.展开更多
The industrial Internet realizes intelligent control and optimized operation of the industrial system through network interconnection.The industrial Internet identifier is the core element to accomplish this task.The ...The industrial Internet realizes intelligent control and optimized operation of the industrial system through network interconnection.The industrial Internet identifier is the core element to accomplish this task.The traditional industrial Internet identifier resolution technologies depend excessively on IP networks,and cannot meet the requirements of ubiquitous resource-restraint Internet of Things(IoT)devices.An industrial Internet identifier resolution management strategy based on multi-identifier network architecture is proposed in this paper,which supports content names,identities,locations,apart from the traditional IP address.The application of multiple types of identifiers not only solves the problem of IP addresses exhaustion,but also enhances the security,credibility,and availability of the industrial Internet identification resolution system.An inter-translation scheme between multiple identifiers is designed to support multiple identifiers and the standard ones.We present an addressing and routing algorithm for identifier resolution to make it convenient to put our strategy into practice.展开更多
Static assignment of IP addresses or identifiers can be exploited by an adversary to attack a network. However, existing dynamic IP address assignment approaches suffer from two limitations, namely: participation of t...Static assignment of IP addresses or identifiers can be exploited by an adversary to attack a network. However, existing dynamic IP address assignment approaches suffer from two limitations, namely: participation of terminals in the assignment and inadequate network server management. Thus, in this paper, we propose an Overall-transparent Dynamic Identifier-mapping Mechanism(ODIM) to manage the identifier of network nodes to defend against scanning and worm propagation in the Smart Identifier NETwork(SINET). We establish the selection and allocation constraints, and present selection and allocation algorithms to determine the constraints. The non-repetition probability and cover cycle allow us to evaluate the defense efficiency against scanning. We propose the probability for routing identifiers and derive the defense efficiency of ODIM against worm propagation. Simulation results and theoretical analysis show that the proposed method effectively reduces the detection probability of Routing IDentifiers(RIDs) and thus improves defense capabilities against worm propagation.展开更多
基金financially supported by the vice chancellor for research and technology of Urmia University
文摘Numerous clustering algorithms are valuable in pattern recognition in forest vegetation,with new ones continually being proposed.While some are well-known,others are underutilized in vegetation science.This study compares the performance of practical iterative reallocation algorithms with model-based clustering algorithms.The data is from forest vegetation in Virginia(United States),the Hyrcanian Forest(Asia),and European beech forests.Practical iterative reallocation algorithms were applied as non-hierarchical methods and Finite Gaussian mixture modeling was used as a model-based clustering method.Due to limitations on dimensionality in model-based clustering,principal coordinates analysis was employed to reduce the dataset’s dimensions.A log transformation was applied to achieve a normal distribution for the pseudo-species data before calculating the Bray-Curtis dissimilarity.The findings indicate that the reallocation of misclassified objects based on silhouette width(OPTSIL)with Flexible-β(-0.25)had the highest mean among the tested clustering algorithms with Silhouette width 1(REMOS1)with Flexible-β(-0.25)second.However,model-based clustering performed poorly.Based on these results,it is recommended using OPTSIL with Flexible-β(-0.25)and REMOS1 with Flexible-β(-0.25)for forest vegetation classification instead of model-based clustering particularly for heterogeneous datasets common in forest vegetation community data.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20242194)the National Natural Science Foundation of China(Grant Nos.52175251 and 52205268)+1 种基金the Industry Key Technology Research Fund Project of Northwestern Polytechnical University(Grant No.HYGJXM202318)the National Basic Scientific Research Program(Grant No.JCKY2021206B005).
文摘Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.
基金Janssen Research & DevelopmentChina,Pfizer Scholarship for Pharmacometrics during this project
文摘A tablet consisting of direct-acting antiviral agents,ledipasvir(a NS5 A protein inhibitor) and sofosbuvir(a NS5 B polymerase inhibitor),is the first fixed-dose preparation used in the antiviral therapy of hepatitis C.A model-based meta-analysis of ledipasvir and GS331007,the primary metabolite of sofosbuvir,enabled the integration of pharmacokinetic(PK) information from separate clinical trials and the quantitative characterization of the population pharmacokinetics of these two drugs.A systematic publication search was conducted for the clinical studies of ledipasvir and sofosbuvir.A total of 401 arm-level aggregate concentrations of GS331007 and 188 concentrations of ledipasvir were used for PK modeling.A two-compartment disposition model was used for both ledipasvir and GS331007.Zero-order absorption was applied for ledipasvir PK modeling,and a combined zero- and first-order absorption was used for the modeling of GS331007.Absorption lag was observed in concentration-time profiles of both ledipasvir and GS331007.To aid the development of direct-acting antiviral drugs,our established PK models provided a basis for the further PK-viral kinetic studies of ledipasvir and sofosbuvir.
基金supported by National Natural Science Foundation of China(Grant No. 10772061)Heilongjiang Provincial Natural Science Foundation of China(Grant No. ZJG0704)
文摘The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.
文摘This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes design- based and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data.We review studies on large-area forest surveys based on model-assisted, model- based, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters.
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
基金the Aeronautics Science Foundation of China(No.2011ZD51055)Science and Technology on Reliability&Environmental Engineering Laboratory(No.302367)the National Pre-Research Foundation of China(No.51319080201)
文摘Robustness testing for safety-critical embedded software is still a challenge in its nascent stages. In this paper, we propose a practical methodology and implement an environment by employing model-based robustness testing for embedded software systems. It is a system-level black-box testing approach in which the fault behaviors of embedded software is triggered with the aid of modelbased fault injection by the support of an executable model-driven hardware-in-loop (HIL) testing environment. The prototype implementation of the robustness testing environment based on the proposed approach is experimentally discussed and illustrated by industrial case studies based on several avionics-embedded software systems. The results show that our proposed and implemented robustness testing method and environment are effective to find more bugs, and reduce burdens of testing engineers to enhance efficiency of testing tasks, especially for testing complex embedded systems.
文摘In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors.
基金partially funded by the National Natural Science Foundation of China (No.51805262)
文摘This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack propagation in fuselage panels where the model parameters are unknown and the crack propagation is affected by different types of uncertainties. The coupled method is composed of two steps. The first step employs EKF to estimate the unknown model parameters and the current damage state. In the second step, the proposed efficient linearization method is applied to compute analytically the statistical distribution of the damage evolution path in some future time. A numerical case study is implemented to evaluate the performance of the proposed method. The results show that the coupled EKF-linearization method provides satisfactory results: the EKF algorithm well identifies the model parameters, and the linearization method gives comparable prediction results to Monte Carlo(MC) method while leading to very significant computational cost saving. The proposed prognostics method for fatigue crack growth can be used for developing predictive maintenance strategy for an aircraft fleet, in which case, the computational cost saving is significantly meaningful.
文摘In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.
文摘This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system; an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.
基金supported by the National Science Foundation under Award#1823951-1823983。
文摘We design a regulation-triggered adaptive controller for robot manipulators to efficiently estimate unknown parameters and to achieve asymptotic stability in the presence of coupled uncertainties.Robot manipulators are widely used in telemanipulation systems where they are subject to model and environmental uncertainties.Using conventional control algorithms on such systems can cause not only poor control performance,but also expensive computational costs and catastrophic instabilities.Therefore,system uncertainties need to be estimated through designing a computationally efficient adaptive control law.We focus on robot manipulators as an example of a highly nonlinear system.As a case study,a 2-DOF manipulator subject to four parametric uncertainties is investigated.First,the dynamic equations of the manipulator are derived,and the corresponding regressor matrix is constructed for the unknown parameters.For a general nonlinear system,a theorem is presented to guarantee the asymptotic stability of the system and the convergence of parameters'estimations.Finally,simulation results are discussed for a two-link manipulator,and the performance of the proposed scheme is thoroughly evaluated.
基金Projects(51135009)supported by the National Natural Science Foundation of China
文摘This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.
基金The research was funded by Universiti Teknologi Malaysia(UTM)and the MalaysianMinistry of Higher Education(MOHE)under the Industry-International Incentive Grant Scheme(IIIGS)(Vote Number:Q.J130000.3651.02M67 and Q.J130000.3051.01M86)the Aca-demic Fellowship Scheme(SLAM).
文摘Testing is an integral part of software development.Current fastpaced system developments have rendered traditional testing techniques obsolete.Therefore,automated testing techniques are needed to adapt to such system developments speed.Model-based testing(MBT)is a technique that uses system models to generate and execute test cases automatically.It was identified that the test data generation(TDG)in many existing model-based test case generation(MB-TCG)approaches were still manual.An automatic and effective TDG can further reduce testing cost while detecting more faults.This study proposes an automated TDG approach in MB-TCG using the extended finite state machine model(EFSM).The proposed approach integrates MBT with combinatorial testing.The information available in an EFSM model and the boundary value analysis strategy are used to automate the domain input classifications which were done manually by the existing approach.The results showed that the proposed approach was able to detect 6.62 percent more faults than the conventionalMB-TCG but at the same time generated 43 more tests.The proposed approach effectively detects faults,but a further treatment to the generated tests such as test case prioritization should be done to increase the effectiveness and efficiency of testing.
文摘Centralized storage and identity identification methods pose many risks,including hacker attacks,data misuse,and single points of failure.Additionally,existing centralized identity management methods face interoperability issues and rely on a single identity provider,leaving users without control over their identities.Therefore,this paper proposes a mechanism for identity identification and data sharing based on decentralized identifiers.The scheme utilizes blockchain technology to store the identifiers and data hashed on the chain to ensure permanent identity recognition and data integrity.Data is stored on InterPlanetary File System(IPFS)to avoid the risk of single points of failure and to enhance data persistence and availability.At the same time,compliance with World Wide Web Consortium(W3C)standards for decentralized identifiers and verifiable credentials increases the mechanism’s scalability and interoperability.
文摘The study on artificial intelligence(AI) methods for tuning of particle accelerators has been reported in many literatures.This paper presents tuning method for agent-based control systems of transport lines in the case of sensor/actuator failures.The method uses model-based tracking concept to relax the demand on sensor data.The condition for successful operation of the stated scheme is derived,and the concept is demonstrated through simulation by applying it to the model of microtron,transport line-1 and booster of indus accelerator.The results show that this approach is very effective in transport line control during sensor/actuator failures.
基金supported in part by PCL Future Regional Network Facilities for Large-scale Experiments and Applications under Grant NO.PCL2018KP001by Guangdong R&D Key Program under Grant No.GD2016B030305005+3 种基金by National Natural Science Foundation of China(NSFC)under Grant No.61671001by National Key R&D Program of China under Grant No.2017YFB0803204by Shenzhen Research Programs under Grant Nos.JSGG20170824095858416,JCYJ20190808155607340,and JCYJ20170306092030521This work is also supported by the Shenzhen Municipal Development and Reform Commission(Disciplinary Development Program for Data Sci⁃ence and Intelligent Computing).
文摘The industrial Internet realizes intelligent control and optimized operation of the industrial system through network interconnection.The industrial Internet identifier is the core element to accomplish this task.The traditional industrial Internet identifier resolution technologies depend excessively on IP networks,and cannot meet the requirements of ubiquitous resource-restraint Internet of Things(IoT)devices.An industrial Internet identifier resolution management strategy based on multi-identifier network architecture is proposed in this paper,which supports content names,identities,locations,apart from the traditional IP address.The application of multiple types of identifiers not only solves the problem of IP addresses exhaustion,but also enhances the security,credibility,and availability of the industrial Internet identification resolution system.An inter-translation scheme between multiple identifiers is designed to support multiple identifiers and the standard ones.We present an addressing and routing algorithm for identifier resolution to make it convenient to put our strategy into practice.
文摘Static assignment of IP addresses or identifiers can be exploited by an adversary to attack a network. However, existing dynamic IP address assignment approaches suffer from two limitations, namely: participation of terminals in the assignment and inadequate network server management. Thus, in this paper, we propose an Overall-transparent Dynamic Identifier-mapping Mechanism(ODIM) to manage the identifier of network nodes to defend against scanning and worm propagation in the Smart Identifier NETwork(SINET). We establish the selection and allocation constraints, and present selection and allocation algorithms to determine the constraints. The non-repetition probability and cover cycle allow us to evaluate the defense efficiency against scanning. We propose the probability for routing identifiers and derive the defense efficiency of ODIM against worm propagation. Simulation results and theoretical analysis show that the proposed method effectively reduces the detection probability of Routing IDentifiers(RIDs) and thus improves defense capabilities against worm propagation.