This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the developmen...This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes design- based and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data.We review studies on large-area forest surveys based on model-assisted, model- based, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters.展开更多
Although the Model-Driven paradigm is being accepted in the research environment as a very useful and powerful option for effective software development, its real application in the enterprise context is still a chall...Although the Model-Driven paradigm is being accepted in the research environment as a very useful and powerful option for effective software development, its real application in the enterprise context is still a challenge for software engineering. Several causes can be stacked out, but one of them can be the lack of tool support for the efficient application of this paradigm. This paper presents a set of tools, grouped in a suite named NDT-Suite, which under the Model-Driven paradigm offer a suitable solution for software development. These tools explore different options that this paradigm can improve such as, development, quality assurance or requirement treatment. Besides, this paper analyses how they are being successfully applied in the industry.展开更多
目的运用Model-View-Controller架构于因特网,设计与研发中医舌诊教学的网站。方法本因特网教学系统使用Websphere6.0服务器、DB28.1.7数据库、Java Server Faces、Structure Query Language、HTML以及JavaScript等共同开发而成。邀请8...目的运用Model-View-Controller架构于因特网,设计与研发中医舌诊教学的网站。方法本因特网教学系统使用Websphere6.0服务器、DB28.1.7数据库、Java Server Faces、Structure Query Language、HTML以及JavaScript等共同开发而成。邀请85位大学护理学生参与测试。结果中医舌诊网站含盖八大相关部分。学习成效测试结果显示,网络教学方式可增加学生相关的专业知识。展开更多
The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount o...The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.展开更多
Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembl...Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-of- freedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the fraane is represented physically in the laboratory as a cantilevered steel column. For real- time execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controUed at the interface between substructures.展开更多
In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
Robustness testing for safety-critical embedded software is still a challenge in its nascent stages. In this paper, we propose a practical methodology and implement an environment by employing model-based robustness t...Robustness testing for safety-critical embedded software is still a challenge in its nascent stages. In this paper, we propose a practical methodology and implement an environment by employing model-based robustness testing for embedded software systems. It is a system-level black-box testing approach in which the fault behaviors of embedded software is triggered with the aid of modelbased fault injection by the support of an executable model-driven hardware-in-loop (HIL) testing environment. The prototype implementation of the robustness testing environment based on the proposed approach is experimentally discussed and illustrated by industrial case studies based on several avionics-embedded software systems. The results show that our proposed and implemented robustness testing method and environment are effective to find more bugs, and reduce burdens of testing engineers to enhance efficiency of testing tasks, especially for testing complex embedded systems.展开更多
This paper introduces a model-free reinforcement learning technique that is used to solve a class of dynamic games known as dynamic graphical games. The graphical game results from to make all the agents synchronize t...This paper introduces a model-free reinforcement learning technique that is used to solve a class of dynamic games known as dynamic graphical games. The graphical game results from to make all the agents synchronize to the state of a command multi-agent dynamical systems, where pinning control is used generator or a leader agent. Novel coupled Bellman equations and Hamiltonian functions are developed for the dynamic graphical games. The Hamiltonian mechanics are used to derive the necessary conditions for optimality. The solution for the dynamic graphical game is given in terms of the solution to a set of coupled Hamilton-Jacobi-Bellman equations developed herein. Nash equilibrium solution for the graphical game is given in terms of the solution to the underlying coupled Hamilton-Jacobi-Bellman equations. An online model-free policy iteration algorithm is developed to learn the Nash solution for the dynamic graphical game. This algorithm does not require any knowledge of the agents' dynamics. A proof of convergence for this multi-agent learning algorithm is given under mild assumption about the inter-connectivity properties of the graph. A gradient descent technique with critic network structures is used to implement the policy iteration algorithm to solve the graphical game online in real-time.展开更多
The interacting boson model of Arima, Iachello, and co-workers is applied to the even ruthenium isotopes, ^96 Ru -116Ru. Excitation energies, electromagnetic transition strengths, quadrupole and magnetic dipole moment...The interacting boson model of Arima, Iachello, and co-workers is applied to the even ruthenium isotopes, ^96 Ru -116Ru. Excitation energies, electromagnetic transition strengths, quadrupole and magnetic dipole moments, and △(E2/M1) mixing ratios have been described systematically. Mixed symmetry states are investigated. It is seen that the properties of low-lying levels in these isotopes, for which the comparison between experiment and theory is possible, can be satisfactorily characterized by the Interacting Boson Model-2.展开更多
In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memo...In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memory. This approach is adaptive and model-free, which can simulate the individual activities of the system's participants, therefore, it has strong ability to recognize the operating mechanism of the system. Based on the previous cognition about the system, a testing statistic is developed for the detection of structural changes in the system. Furthermore, an example is presented to illustrate the validity and practical value of the proposed.展开更多
In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted a...In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.展开更多
This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack ...This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack propagation in fuselage panels where the model parameters are unknown and the crack propagation is affected by different types of uncertainties. The coupled method is composed of two steps. The first step employs EKF to estimate the unknown model parameters and the current damage state. In the second step, the proposed efficient linearization method is applied to compute analytically the statistical distribution of the damage evolution path in some future time. A numerical case study is implemented to evaluate the performance of the proposed method. The results show that the coupled EKF-linearization method provides satisfactory results: the EKF algorithm well identifies the model parameters, and the linearization method gives comparable prediction results to Monte Carlo(MC) method while leading to very significant computational cost saving. The proposed prognostics method for fatigue crack growth can be used for developing predictive maintenance strategy for an aircraft fleet, in which case, the computational cost saving is significantly meaningful.展开更多
A model-flee compound controller design method is proposed to achieve the wide frequency bandwidth requirement of flight simulators. The method based on quantitative feedback theory, acquires system uncertainty under ...A model-flee compound controller design method is proposed to achieve the wide frequency bandwidth requirement of flight simulators. The method based on quantitative feedback theory, acquires system uncertainty under different working conditions through closed-loop identification with power spectrum estimation. Then in controller designing, it makes a trade, off between the strict requirements for magnitude-frequency characteristics and those for phase-frequency characteristics of flight simulators, by converting the indices of magnitude-frequency characteristics of flight simulators into quantitative feedback theory-based tracking specification bounds and using feedforward controller to attain the required phase-flequency characteristics. Simulation and experimental results indicate that, when used to design inner flame controller of flight simulator, the proposed method can fulfill the requirements for wide frequency bandwidth indices. Compared with other controller design methods, it has the property of model-free and transparency.展开更多
文摘This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes design- based and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data.We review studies on large-area forest surveys based on model-assisted, model- based, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters.
文摘Although the Model-Driven paradigm is being accepted in the research environment as a very useful and powerful option for effective software development, its real application in the enterprise context is still a challenge for software engineering. Several causes can be stacked out, but one of them can be the lack of tool support for the efficient application of this paradigm. This paper presents a set of tools, grouped in a suite named NDT-Suite, which under the Model-Driven paradigm offer a suitable solution for software development. These tools explore different options that this paradigm can improve such as, development, quality assurance or requirement treatment. Besides, this paper analyses how they are being successfully applied in the industry.
文摘目的运用Model-View-Controller架构于因特网,设计与研发中医舌诊教学的网站。方法本因特网教学系统使用Websphere6.0服务器、DB28.1.7数据库、Java Server Faces、Structure Query Language、HTML以及JavaScript等共同开发而成。邀请85位大学护理学生参与测试。结果中医舌诊网站含盖八大相关部分。学习成效测试结果显示,网络教学方式可增加学生相关的专业知识。
基金supported by National Natural Science Foundation of China(Grant No. 10772061)Heilongjiang Provincial Natural Science Foundation of China(Grant No. ZJG0704)
文摘The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.
基金CONICYT-Chile through Becas Chile Scholarship under Grant No.72140204Universidad Tecnica Federico Santa Maria(Chile)through Faculty Development Scholarship under Grant No.208-13
文摘Real-time hybrid simulation is an efficient and cost-effective dynamic testing technique for performance evaluation of structural systems subjected to earthquake loading with rate-dependent behavior. A loading assembly with multiple actuators is required to impose realistic boundary conditions on physical specimens. However, such a testing system is expected to exhibit significant dynamic coupling of the actuators and suffer from time lags that are associated with the dynamics of the servo-hydraulic system, as well as control-structure interaction (CSI). One approach to reducing experimental errors considers a multi-input, multi-output (MIMO) controller design, yielding accurate reference tracking and noise rejection. In this paper, a framework for multi-axial real-time hybrid simulation (maRTHS) testing is presented. The methodology employs a real-time feedback-feedforward controller for multiple actuators commanded in Cartesian coordinates. Kinematic transformations between actuator space and Cartesian space are derived for all six-degrees-of- freedom of the moving platform. Then, a frequency domain identification technique is used to develop an accurate MIMO transfer function of the system. Further, a Cartesian-domain model-based feedforward-feedback controller is implemented for time lag compensation and to increase the robustness of the reference tracking for given model uncertainty. The framework is implemented using the 1/5th-scale Load and Boundary Condition Box (LBCB) located at the University of Illinois at Urbana- Champaign. To demonstrate the efficacy of the proposed methodology, a single-story frame subjected to earthquake loading is tested. One of the columns in the fraane is represented physically in the laboratory as a cantilevered steel column. For real- time execution, the numerical substructure, kinematic transformations, and controllers are implemented on a digital signal processor. Results show excellent performance of the maRTHS framework when six-degrees-of-freedom are controUed at the interface between substructures.
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
基金the Aeronautics Science Foundation of China(No.2011ZD51055)Science and Technology on Reliability&Environmental Engineering Laboratory(No.302367)the National Pre-Research Foundation of China(No.51319080201)
文摘Robustness testing for safety-critical embedded software is still a challenge in its nascent stages. In this paper, we propose a practical methodology and implement an environment by employing model-based robustness testing for embedded software systems. It is a system-level black-box testing approach in which the fault behaviors of embedded software is triggered with the aid of modelbased fault injection by the support of an executable model-driven hardware-in-loop (HIL) testing environment. The prototype implementation of the robustness testing environment based on the proposed approach is experimentally discussed and illustrated by industrial case studies based on several avionics-embedded software systems. The results show that our proposed and implemented robustness testing method and environment are effective to find more bugs, and reduce burdens of testing engineers to enhance efficiency of testing tasks, especially for testing complex embedded systems.
基金supported by the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals Project(No.JF141002)the National Science Foundation(No.ECCS-1405173)+3 种基金the Office of Naval Research(Nos.N000141310562,N000141410718)the U.S. Army Research Office(No.W911NF-11-D-0001)the National Natural Science Foundation of China(No.61120106011)the Project 111 from the Ministry of Education of China(No.B08015)
文摘This paper introduces a model-free reinforcement learning technique that is used to solve a class of dynamic games known as dynamic graphical games. The graphical game results from to make all the agents synchronize to the state of a command multi-agent dynamical systems, where pinning control is used generator or a leader agent. Novel coupled Bellman equations and Hamiltonian functions are developed for the dynamic graphical games. The Hamiltonian mechanics are used to derive the necessary conditions for optimality. The solution for the dynamic graphical game is given in terms of the solution to a set of coupled Hamilton-Jacobi-Bellman equations developed herein. Nash equilibrium solution for the graphical game is given in terms of the solution to the underlying coupled Hamilton-Jacobi-Bellman equations. An online model-free policy iteration algorithm is developed to learn the Nash solution for the dynamic graphical game. This algorithm does not require any knowledge of the agents' dynamics. A proof of convergence for this multi-agent learning algorithm is given under mild assumption about the inter-connectivity properties of the graph. A gradient descent technique with critic network structures is used to implement the policy iteration algorithm to solve the graphical game online in real-time.
文摘The interacting boson model of Arima, Iachello, and co-workers is applied to the even ruthenium isotopes, ^96 Ru -116Ru. Excitation energies, electromagnetic transition strengths, quadrupole and magnetic dipole moments, and △(E2/M1) mixing ratios have been described systematically. Mixed symmetry states are investigated. It is seen that the properties of low-lying levels in these isotopes, for which the comparison between experiment and theory is possible, can be satisfactorily characterized by the Interacting Boson Model-2.
文摘In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memory. This approach is adaptive and model-free, which can simulate the individual activities of the system's participants, therefore, it has strong ability to recognize the operating mechanism of the system. Based on the previous cognition about the system, a testing statistic is developed for the detection of structural changes in the system. Furthermore, an example is presented to illustrate the validity and practical value of the proposed.
文摘In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.
基金partially funded by the National Natural Science Foundation of China (No.51805262)
文摘This paper proposes a model-based prognostics method that couples the Extended Kalman Filter(EKF) and a new developed linearization method. The proposed prognostics method is developed in the context of fatigue crack propagation in fuselage panels where the model parameters are unknown and the crack propagation is affected by different types of uncertainties. The coupled method is composed of two steps. The first step employs EKF to estimate the unknown model parameters and the current damage state. In the second step, the proposed efficient linearization method is applied to compute analytically the statistical distribution of the damage evolution path in some future time. A numerical case study is implemented to evaluate the performance of the proposed method. The results show that the coupled EKF-linearization method provides satisfactory results: the EKF algorithm well identifies the model parameters, and the linearization method gives comparable prediction results to Monte Carlo(MC) method while leading to very significant computational cost saving. The proposed prognostics method for fatigue crack growth can be used for developing predictive maintenance strategy for an aircraft fleet, in which case, the computational cost saving is significantly meaningful.
文摘A model-flee compound controller design method is proposed to achieve the wide frequency bandwidth requirement of flight simulators. The method based on quantitative feedback theory, acquires system uncertainty under different working conditions through closed-loop identification with power spectrum estimation. Then in controller designing, it makes a trade, off between the strict requirements for magnitude-frequency characteristics and those for phase-frequency characteristics of flight simulators, by converting the indices of magnitude-frequency characteristics of flight simulators into quantitative feedback theory-based tracking specification bounds and using feedforward controller to attain the required phase-flequency characteristics. Simulation and experimental results indicate that, when used to design inner flame controller of flight simulator, the proposed method can fulfill the requirements for wide frequency bandwidth indices. Compared with other controller design methods, it has the property of model-free and transparency.