期刊文献+
共找到5,546篇文章
< 1 2 250 >
每页显示 20 50 100
Kinematic Calibration of a 5-DoF Parallel Machining Robot with a Novel Adaptive and Weighted Identification Method Based on Generalized Cross Validation
1
作者 Lefeng Gu Fugui Xie 《Chinese Journal of Mechanical Engineering》 2025年第2期262-278,共17页
Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification ... Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively. 展开更多
关键词 Parallel machining robot Accurate kinematic calibration Weighted identification model Adaptive identification algorithm
在线阅读 下载PDF
Application of SWAT Model to the Olifants Basin: Calibration, Validation and Uncertainty Analysis 被引量:3
2
作者 Charles Gyamfi Julius Musyoka Ndambuki Ramadhan Wanjala Salim 《Journal of Water Resource and Protection》 2016年第3期397-410,共14页
The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretize... The application of the Soil and Water Assessment Tool (SWAT) to the Olifants Basin in South Africa was the focus of our study with emphasis on calibration, validation and uncertainty analysis. The Basin was discretized into 23 sub-basins and 226 Hydrologic Response Units (HRUs) using 3 arc second (90 m × 90 m) pixel resolution SRTM DEM with stream gauge B7H015 as the Basin outlet. Observed stream flow data at B7H015 were used for model calibration (1988-2001) and validation (2002-2013) using the split sample approach. Relative global sensitivity analysis using SUFI-2 algorithm was used to determine sensitive parameters to stream flow for calibration of the model. Performance efficiency of the Olifants SWAT model was assessed using Nash-Sutcliffe (NSE), coefficient of determination (R<sup>2</sup>), Percent Bias (PBIAS) and Root Mean Square Error-Observation Standard deviation Ratio (RSR). Sensitivity analysis revealed in decreasing order of significance, runoff curve number (CN2), alpha bank factor (ALPHA_BNK), soil evaporation compensation factor (ESCO), soil available water capacity (SOIL_AWC, mm H<sub>2</sub>O/mm soil), groundwater delay (GW_ DELAY, days) and groundwater “revap” coefficient (GW_REVAP) to be the most sensitive parameters to stream flow. Analysis of the model during the calibration period gave the following statistics;NSE = 0.88;R<sup>2</sup> = 0.89;PBIAS = -11.49%;RSR = 0.34. On the other hand, statistics during the validation period were NSE = 0.67;R<sup>2 </sup>= 0.79;PBIAS = -20.69%;RSR = 0.57. The observed statistics indicate the applicability of the SWAT model in simulating the hydrology of the Olifants Basin and therefore can be used as a Decision Support Tool (DST) by water managers and other relevant decisions making bodies to influence policy directions on the management of watershed processes especially water resources. 展开更多
关键词 calibration validation Uncertainty Analysis Olifants Basin SWAT model
在线阅读 下载PDF
Calibration and Validation of Strategic Freight Transportation Planning Models with Limited Information 被引量:1
3
作者 Bart Jourquin 《Journal of Transportation Technologies》 2016年第5期239-256,共18页
Strategic transportation network models are often used as support tools in the framework of decisions to be taken at the policy level, such as the Trans-European Network projects. These models are mostly setup using a... Strategic transportation network models are often used as support tools in the framework of decisions to be taken at the policy level, such as the Trans-European Network projects. These models are mostly setup using aggregated or limited data. If their calibration is regularly mentioned in the literature, their validation is barely discussed. In this paper, several modal choice model specifications that make only use of explanatory variables available at the network level are described and applied to a large scale case. A validation exercise is performed at three levels of aggregation. The paper is designed from a strategic transport planning perspective, and does not present new modal choice formulations or assignment procedures. Its main added value is the focus on calibration and validation considerations. Despite the limited explanatory information used, the global performance of the best models can be considered as satisfactory. However, the quality of the models varies from mode to mode, the use of railway transport being the most difficult to predict without more specific input. 展开更多
关键词 calibration validation NETWORK Freight Transport Modal Choice ASSIGNMENT
在线阅读 下载PDF
Calibration and Validation of Decision Support System for Agro-Technology Transfer Model for Simulating Growth and Yield of Maize in Bangladesh
4
作者 F. Ahmed Apurba K. Choudhury +14 位作者 S. Akhter M. A. Aziz Jatish C. Biswas M. Maniruzzaman M. Main Uddin Miah M. M. Rahman M. A. H. S. Jahan Imrul Mosaddek Ahmed R. Sen S. Ishtiaque A. F. M. Tariqul Islam M. M. Haque M. Belal Hossain Naveen Kalra M. Hafijur Rahman 《American Journal of Plant Sciences》 2017年第7期1632-1645,共14页
Maize is an emerging important crop in Bangladesh because of its high yield potential and economic profitability compared to rice and wheat crops. There is a need to understand the growth and yield behavior of this cr... Maize is an emerging important crop in Bangladesh because of its high yield potential and economic profitability compared to rice and wheat crops. There is a need to understand the growth and yield behavior of this crop in varying production environments of Bangladesh. Crop model such as Decision Support System For Agro-technology Transfer (DSSAT) version 4.6 (DSSAT hereafter) can be utilized cost effectively to study the performances of maize under different production environments. It needs to calibrate and validate DSSAT model for commonly cultivated maize cultivars in Bangladesh and subsequently take the model to various applications, including inputs and agronomic management options and climate change that impacts analyses. So, the present study was undertaken to firstly calibrate DSSAT model for popular four hybrid maize cultivars (BARI Hybrid Maize-7, BARI Hybrid Maize-9, Pioneer 30B07 and NK-40). Subsequently, it proceeded with the validation with independent field data sets for evaluating their growth performances. The genetic coefficients for these cultivars were evaluated by using Genotype coefficient calculator (GENCALC) and Generalized likelihood uncertainty estimation (GLUE) module of DSSAT on the basis of first season experiment. The performance of the model was satisfactory and within the significant limits. After calibration, the model was tested for its performance through validation procedure by using second season data. The model performed satisfactorily through phenology, biomass, leaf area index (LAI) and grain yield. Phenology, as estimated through days to flower initiation and maturity, was in good agreement, although simulated results were slightly over predicted compared to observed values but within the statistical significance limit...when compared with observed values at specific growth stages of the crop. The final yield values (10.12 to 10.59 t·ha-1) were in close agreement with the observed values (10.16 to 10.94 t·ha-1), as the percentage error was within tolerable limit (0.39% to 6.81%). The model has been successfully calibrated and validated for Gazipur environment and now can be used for climate change impact studies for similar environments in Bangladesh. 展开更多
关键词 calibration validation DSSAT model and MAIZE
暂未订购
Analysis of Various Quality Attributes of Sunflower and Soybean Plants by Near Infrared Reflectance Spectroscopy: Development and Validation Calibration Models
5
作者 Uttam Saha Dinku Endale +5 位作者 P. Glynn Tillman W. Carroll Johnson Julia Gaskin Leticia Sonon Harry Schomberg Yuangen Yang 《American Journal of Analytical Chemistry》 2017年第7期462-492,共31页
Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil y... Soybean and sunflower are summer annuals that can be grown as an alternative to corn and may be particularly useful in organic production systems for forage in addition to their traditional use as protein and/or oil yielding crops. Rapid and low cost methods of analyzing plant forage quality would be helpful for nutrition management of livestock. We developed and validated calibration models using Near-infrared Reflectance Spectroscopic (NIRS) analysis for 27 different forage quality parameters of organically grown sunflower and soybean leaves or reproductive parts. Crops were managed under conventional tillage or no-till with a cover crop of wheat before soybean and rye-crimson clover before sunflower. From a population of 120 samples from both crops, covering multiple sampling dates within the treatments, calibration models were developed utilizing spectral information covering both visible and NIR region of 61 - 85 randomly chosen samples using modified partial least-squares (MPLS) regression with internal cross validation. Within MPLS protocol, we compared nine different math treatments on the quality of the calibration models. The math treatment “2,4,4,1” yielded the best quality models for all but starch and simple sugars (r2 = 0.699 - 0.999;where the 1st digit is the number of the derivative with 0 for raw spectra, 1 for first derivative, and 2 for second derivative, the 2nd digit is the gap over which the derivative is calculated, the 3rd digit is the number of data points in a running average or smoothing, and the 4th digit is the second smoothing). Prediction of an independent validation set of 28-35 samples with these models yielded excellent agreement between the NIRS predicted values and the reference values except for starch (r2 = 0.8260 - 0.9990). The results showed that the same model was able to adequately quantify a particular forage quality of both crops managed under different tillage treatments and at different stages of growth. Thus, these models can be reliably applied in the routine analysis of soybean and sunflower forage quality for the purposes of livestock nutrient management decisions. 展开更多
关键词 NIRS calibration SOYBEAN SUNFLOWER validation
暂未订购
Calibration and Validation of the GR2M Hydrologic Model in the Kouilou-Niari Basin in Southwestern Congo-Brazzaville
6
作者 Christian Ngoma Mvoundou Christian Tathy +2 位作者 Harmel Obami-Ondon Guy Blanchard Matété Moukoko Richard Romain Niere 《Open Journal of Modern Hydrology》 CAS 2022年第3期109-124,共16页
The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time s... The hydrologic simulation of a catchment area, described as the transformation of rainfall into runoff, generally uses hydrologic model. This work opts for the global conceptual hydrologic model GR2M, a monthly time step model, to study the Kouilou-Niari basin, the second most important ones of the Republic of Congo. This includes two parameters to model the hydrologic behavior of a catchment area. The choice of the conceptual model GR2M is justified by the reduced number of parameters and the monthly time scale. The objective of this study is to determine the characteristic parameters of the GR2M model, by a calibrating and a validating procedure. The use of these parameters enables to follow the evolution of the water resources from the climatic variables. It has been first carried out a characterization of some physical, geological and climatic factors governing the flow, by dealing with the main climatic variables which constitute the inputs of the hydrologic model. Then, a hydrologic rainfall-runoff modeling allows to calibrate and validate the model at monthly time scale. Taking into account the number of parameters involved in hydrologic processes and the complexity of the cathment area, this model gives acceptable results throughout the Kouilou-Niari basin. The values of the Nash-Sutcliffe criterion and those of the correlation coefficient obtained are greater than 80% in validation, which explains the performance and robustness of the GR2M model on this basin. 展开更多
关键词 Kouilou-Niari Catchment Area Rainfall-Runoff modeling GR2M model Nash-Sutcliffe Criterion calibration Phase validation Phase
在线阅读 下载PDF
A Computational Modeling Approach for Joint Calibration of Low-Deviation Surgical Instruments
7
作者 Bo Yang Yu Zhou +3 位作者 Jiawei Tian Xiang Zhang Fupei Guo Shan Liu 《Computer Modeling in Engineering & Sciences》 2025年第11期2253-2276,共24页
Accurate calibration of surgical instruments and ultrasound probes is essential for achieving high precision in image guided minimally invasive procedures.However,existing methods typically treat the calibration of th... Accurate calibration of surgical instruments and ultrasound probes is essential for achieving high precision in image guided minimally invasive procedures.However,existing methods typically treat the calibration of the needle tip and the ultrasound probe as two independent processes,lacking an integrated calibration mechanism,which often leads to cumulative errors and reduced spatial consistency.To address this challenge,we propose a joint calibration model that unifies the calibration of the surgical needle tip and the ultrasound probe within a single coordinate system.The method formulates the calibration process through a series of mathematical models and coordinate transformation models and employs a gradient descent based optimization to refine the parameters of these models.By establishing and iteratively optimizing a template coordinate system through modeling of constrained spherical motion,the proposed joint calibration model achieves submillimeter accuracy in needle tip localization.Building upon this,an N line based calibration model is developed to determine the spatial relationship between the probe and the ultrasound image plane,resulting in an average pixel deviation of only 1.2373 mm.Experimental results confirm that this unified modeling approach effectively overcomes the limitations of separate calibration schemes,significantly enhancing both precision and robustness,and providing a reliable computational model for surgical navigation systems that require high spatial accuracy without relying on ionizing radiation. 展开更多
关键词 Surgical navigation system joint calibration model ultrasound probe calibration needle tip localization N-line calibration
在线阅读 下载PDF
Maximizing Wind Farm Power Output through Site-Specific Wake Model Calibration and Yaw Optimization
8
作者 Yang Liu Lifu Ding +4 位作者 Zhenfan Yu Tannan Xiao Qiuyu Lu Ying Chen Weihua Wang 《Energy Engineering》 2025年第11期4365-4384,共20页
Wake effects in large-scalewind farms significantly reduce energy capture efficiency.ActiveWakeControl(AWC),particularly through intentional yaw misalignment of upstream turbines,has emerged as a promising strategy to... Wake effects in large-scalewind farms significantly reduce energy capture efficiency.ActiveWakeControl(AWC),particularly through intentional yaw misalignment of upstream turbines,has emerged as a promising strategy to mitigate these losses by redirecting wakes away from downstream turbines.However,the effectiveness of yaw-based AWC is highly dependent on the accuracy of the underlying wake prediction models,which often require site-specific adjustments to reflect local atmospheric conditions and turbine characteristics.This paper presents an integrated,data-driven framework tomaximize wind farmpower output.Themethodology consists of three key stages.First,a practical simulation-assisted matching method is developed to estimate the True North Alignment(TNA)of each turbine using historical Supervisory Control and Data Acquisition(SCADA)data,resolving a common source of operational uncertainty.Second,key wake expansion parameters of the Floris engineering wake model are calibrated using site-specific SCADA power data,tailoring the model to the JibeiWind Farm in China.Finally,using this calibrated model,the derivative-free solver NOMAD is employed to determine the optimal yaw angle settings for an 11-turbine cluster under various wind conditions.Simulation studies,based on real operational scenarios,demonstrate the effectiveness of the proposed framework.The optimized yaw control strategies achieved total power output gains of up to 5.4%compared to the baseline zero-yaw operation under specific wake-inducing conditions.Crucially,the analysis reveals that using the site-specific calibrated model for optimization yields substantially better results than using a model with generic parameters,providing an additional power gain of up to 1.43%in tested scenarios.These findings underscore the critical importance of TNA estimation and site-specific model calibration for developing effective AWC strategies.The proposed integrated approach provides a robust and practical workflow for designing and pre-validating yaw control settings,offering a valuable tool for enhancing the economic performance of wind farms. 展开更多
关键词 Wake control yaw optimization model calibration modeling and simulation of wind farm
在线阅读 下载PDF
Parameterization of the 3‑PG model for Quercus mongolica by using tree‑ring data and Bayesian calibration
9
作者 Wen Nie Qi Wang +7 位作者 Ruizhi Huang Shaowei Yang Yipei Zhao Jingyi Sun Xiangfen Cheng Zuyuan Wang Wenfa Xiao Jianfeng Liu 《Journal of Forestry Research》 2025年第6期69-81,共13页
Although Quercus mongolica is a widely distributed,economically and ecologically important deciduous tree in northern China,models to accurately predict stand growth at a regional scale are limited.The physiological p... Although Quercus mongolica is a widely distributed,economically and ecologically important deciduous tree in northern China,models to accurately predict stand growth at a regional scale are limited.The physiological process model(3-PG)has the potential to predict stand growth dynamics under varying site conditions and climate change scenarios.Here,we used field inventory,tree ring sampling,and Bayesian calibration to parameterize a model for Q.mongolica.Stand volume and productivity were then predicted under present conditions and three future climate scenarios(RCP26,RCP45 and RCP85).Our results demonstrated that after Bayesian calibration,the posterior ranges of the sensitivity parameters apha Cx,wSx1000 and pRn accounted for 34%,45%and 65%,respectively,of their prior range.Calibration and validation results revealed a strong correlation between predicted and measured values(R^(2)>0.87,P<0.01),with<20%bias for all growth indicators.Stand volume was projected to increase by 145%and productivity by 80%by the year 2100 under the RCP85 scenario,although these projections may vary across regions.The present study developed a tailored set of 3-PG model parameters for Q.mongolica,based on a comprehensive range of climate conditions,stand structure,and age classes.These parameters offer a scientific basis to accurately predict growth of other monospecific oak or mixed-species stands. 展开更多
关键词 Quercus mongolica 3-PG model Bayesian calibration Productivity Growth forecast
在线阅读 下载PDF
Preoperative computed tomography-based risk stratification model validation for postoperative pancreatic ductal adenocarcinoma recurrence
10
作者 Xiao-Hui Liu Jing-Hong Xie +1 位作者 Xi-Song Zhu Li-Heng Liu 《World Journal of Gastrointestinal Surgery》 2025年第7期300-308,共9页
BACKGROUND The computed tomography(CT)-based preoperative risk score was developed to predict recurrence after upfront surgery in patients with resectable pancreatic ductal adenocarcinoma(PDAC)in South Korea.However,w... BACKGROUND The computed tomography(CT)-based preoperative risk score was developed to predict recurrence after upfront surgery in patients with resectable pancreatic ductal adenocarcinoma(PDAC)in South Korea.However,whether it performs well in other countries remains unknown.AIM To externally validate the CT-based preoperative risk score for PDAC in a country outside South Korea.METHODS Consecutive patients with PDAC who underwent upfront surgery from January 2016 to December 2019 at our institute in a country outside South Korea were retrospectively included.The study utilized the CT-based risk scoring system,which incorporates tumor size,portal venous phase density,tumor necrosis,peripancreatic infiltration,and suspicious metastatic lymph nodes.Patients were categorized into prognosis groups based on their risk score,as good(risk score<2),moderate(risk score 2-4),and poor(risk score≥5).RESULTS A total of 283 patients were evaluated,comprising 170 males and 113 females,with an average age of 63.52±8.71 years.Follow-up was conducted until May 2023,and 76%of patients experienced tumor recurrence with median recurrence-free survival(RFS)of 29.1±1.9 months.According to the evaluation results of Reader 1,the recurrence rates were 39.0%in the good prognosis group,82.1%in the moderate group,and 84.5%in the poor group.In comparison,Reader 2 reported recurrence rates of 50.0%,79.5%,and 88.9%,respectively,across the same prognostic categories.The study validated the effectiveness of the risk scoring system,demonstrating better RFS in the good prognosis group.CONCLUSION This research validated that the CT-based preoperative risk scoring system can effectively predict RFS in patients with PDAC,suggesting that it may be valuable in diverse populations. 展开更多
关键词 Pancreatic ductal adenocarcinoma Postoperative recurrence Risk assessment system Computed tomography model validation
暂未订购
Systematic calibration of a 2-m Ring Solar Telescope based on local interferometry and model comparison
11
作者 Renai Liu Jinpeng Li +2 位作者 Zuozifei Song Changyu Zeng Yichun Dai 《Astronomical Techniques and Instruments》 2025年第3期175-185,共11页
To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a compar... To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a comparison model.This method enhances the precision of system calibration by establishing a dataset that delineates the relationship between secondary mirror misalignment and wavefront aberration,subsequently inferring the misalignment from interferometric detection results during the calibration process.For the 2-m ring telescope,we develop a detection model using five local sub-apertures,enabling a root-mean-square detection accuracy of 0:0225λ(λ=632:8 nm)for full-aperture wavefront aberration.The calibration results for the 2-m Ring Solar Telescope system indicate that the root-mean-square value of sub-aperture wavefront aberration reaches 0.104λ,and the root-mean-square value of spliced full-aperture measurement yields reaches 0.112λ.This method offers a novel approach for calibrating small width-toradius ratio telescope systems and can be applied to the calibration of other irregular-aperture optical systems. 展开更多
关键词 Local aperture model comparison 2-m Ring Solar Telescope System calibration Splicing algorithm
在线阅读 下载PDF
An Integrated Experimental-Simulation Calibration Method for the Constitutive Model of 6005A-T6 Aluminum Alloy Welds
12
作者 Yu Zhu Lele Zhang +1 位作者 Weiyuan Dou Wen Liu 《Chinese Journal of Mechanical Engineering》 2025年第1期233-245,共13页
Due to the different microstructures caused by the heat source effect,welding joints exhibit significant differences in mechanical properties compared to the base material.Precise characterization of the constitutive ... Due to the different microstructures caused by the heat source effect,welding joints exhibit significant differences in mechanical properties compared to the base material.Precise characterization of the constitutive characteristics of the welded joint requires a large number of repetitive experiments,which are costly,inefficient,and have limited accuracy improvements.This paper proposes an integrated experimental-simulation-based inverse calibration method,which establishes a calibration optimization problem based on the corresponding constitutive model and a finite element calculation model built by the distribution of hardness in the weldment.Using the global tensile force-displacement curve of the MIG-welded 6005A-T6 aluminum alloy specimen and the experimental data of local deformation with time change obtained from DIC(Digital Image Correlation),the parameters involved in the constitutive models are optimized accordingly.This method can directly obtain the constitutive characteristics of the weldment under conditions of limited experiments and insufficient data.Additionally,the adaptability of the constitutive model to the calibration method and the influence of optimization results are discussed and analyzed.The results indicate that the global force-displacement response of the non-saturated Ramberg-Osgood(R-O)model is in the best agreement with that of the experimental data,and the energy error is only 2.62%,followed by the MPL model,while the saturation-based Voce model shows the largest simulation error in terms of the presented object.Furthermore,the simulation results of R-O,Voce,and MPL models in the local area are far superior to traditional fitting methods. 展开更多
关键词 6005A-T6 aluminum alloy MIG-weld joint Parameter calibration Elastic-plastic constitutive model DIC
在线阅读 下载PDF
Validation and Comparison of Two Calibration Methods for the Measurement of Stable Iodine in the Urinary Matrix by ICP-MS:Standard Addition vs.External Calibration 被引量:1
13
作者 Geraldine Landon Celine Bouvier-Capely +7 位作者 Alexandre Legrand Thibaud Sontag Gregory Finance Mailie Saint-Hilaire Francois Rebiere Xavier Millot Valerie Renaud-Salis Michelle Agarande 《American Journal of Analytical Chemistry》 2017年第4期245-263,共19页
Background: In the context of a nuclear reactor accident, thyroid is the main target organ of radioactive iodines. To avoid as much as possible thyroid disorders or even cancer development, it is recommended to admini... Background: In the context of a nuclear reactor accident, thyroid is the main target organ of radioactive iodines. To avoid as much as possible thyroid disorders or even cancer development, it is recommended to administer a single dose of potassium iodide to people at risk of exposure. Nevertheless, the Fukushima Dai-ichi disaster has pointed out many questions about the conditions of stable iodine prophylaxis implementation highlighting the need for reflection further revision of the actual “iodine doctrine”. Therefore, providing useful data is required notably through the implementation of animal experiments to strengthen current knowledge and to edit new recommendations. Methods: Urinary iodine constitutes a very good indicator to investigate the function of thyroid, its interpretation demands reliable analyses. Prior to perform animal experiments, two calibration methods were designed by our lab and compared together (standard addition and external calibration) to assess the urinary concentration of stable iodine in urine by ICP-MS. They were validated based on several key parameters especially linearity, accuracy and limits of detection (LOD) and quantification (LOQ). Results: The results were nicely satisfying. Indeed, both calibration methods have indicated very good coefficients of correlations, accuracies with low expanded relative uncertainties were obtained. The estimated LOD in the sample for standard addition method and external calibration were fully acceptable, 0.39 μg·L-1 and 0.35 μg·L-1, respectively. All performance criteria have been thus fulfilled successfully. The established methods were proven to be accurate, robust and sensitive. Once validated, both calibration methods were applied to rat urine samples and the results of z-score and Wilcoxon W test concluded that there were no statistically significant differences between both methods. 展开更多
关键词 Stable Iodine URINE Standard Addition External calibration validation
暂未订购
GOCE kinematic orbit adjustment for EGM validation and accelerometer calibration
14
作者 徐天河 孙张振 +2 位作者 江楠 陈康康 李敏 《Journal of Central South University》 SCIE EI CAS 2014年第6期2397-2403,共7页
The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-... The main principle and mathematical model of GOCE kinematic orbit adjustment for Earth gravity field model (EGM) validation and accelerometer calibration are presented. Based on 60 days GOCE kinematic orbits with 1-2 cm accuracy and accelerometer data from 2009-11-02 to 2009-12-31, the RMS-of-fit (ROF) of them using EGM2008, EIGEN-SC, ITG- GRACE2010S and GOCO01S up to 120, 150 and 180 degree and order (d/o) are evaluated and compared. The scale factors and biases of GOCE accelerometer data are calibrated and the energy balance method (EBM) is performed to test the accuracy of accelerometer calibration. The results show that GOCE orbits are also sensitive to EGM from 120 to 150 d/o. The ROFs of EGMs with 150 and 180 d/o are obviously better than those of EGMs with 120 d/o. The ROFs of GOCO01S and ITG-GRACE2010S are almost the same up to 120 and 150 d/o, which are about 3.3 cm and 1.8 cm, respectively. They are far better than those of EGM2008 and EIGEN-SC with the same d/o. The ROF of GOCO01S with 180 d/o is about 1.6 em, which is the best one among those EGMs. The accelerometer calibration accuracies (ACAs) of ITG-GRACE2010S and GOCO01S are obviously higher that those of EGM2008 and EIGEN-SC. The ACA of GOCO01S with 180 d/o is far higher than that of EGMs with 120 d/o, and a little higher than that of ITG-GRACE2010S with 150 d/o. I t is suggested that the newest released EGM such as GOCO01S or GOCO02S till at least 150 d/o should be chosen in GOCE precise orbit determination (POD) and accelerometer calibration. 展开更多
关键词 GOCE orbit adjustment Earth gravity field model kinematic orbit accelerometer calibration
在线阅读 下载PDF
THE MODEL VALIDATION OF DYNAMIC NEURAL NETWORKS
15
作者 李秀娟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第2期185-189,共5页
This paper investigates the problem of the model validation in identifying discrete-time-nonlinear dynamic systems by using neural networks with a single hidden layer.Based on the estimation theory,a synthetic error-i... This paper investigates the problem of the model validation in identifying discrete-time-nonlinear dynamic systems by using neural networks with a single hidden layer.Based on the estimation theory,a synthetic error-index(SEI)criterion for the neural network models has been developed.By using the powerful training algorithm of recursive prediction error (RPE),two simulated non-linear systems are studied,and the results show that the synthetic error-index criterion can be used to verify the dynamic neural network models.Furthermore,the proposed technique is much simple in calculation than that of the effective correlation tests.Finally,some problems required by further study are discussed. 展开更多
关键词 neural networks dynamic models non-linear systems odel validation system identification
在线阅读 下载PDF
A Land Surface Model(IAP94) for Climate Studies PartI:Formulation and Validation in Off-line Experiments 被引量:60
16
作者 戴永久 曾庆存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1997年第4期2-29,共23页
The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has ... The IAP (Institute of Atmospheric Physics) land-surface model (IAP94) is described. This model is a comprehensive one with detailed description for the processes of vegetation, snow and soil. Particular attention has been paid to the cases with three water phases in the surface media. On the basis of the mixture theory and the theory of fluid dynamics of porous media, the system of universal conservational equations for water and heat of soil, snow and vegetation canopy has been constructed. On this background, all important factors that may affect the water and heat balance in media can be considered naturally, and each factor and term possess distinct physical meaning. In the computation of water content and temperature, the water phase change and the heat transportation by water flow are taken into account. Moreover, particular attention has been given to the water vapor diffusion in soil for arid or semi-arid cases, and snow compaction. In the treatment of surface turbulent fluxes, the difference between aerodynamic and thermal roughness is taken into account. The aerodynamic roughness of vegetation is calculated as a function of canopy density, height and zero-plane displacement. An extrapolation of log linear and exponential relationship is used when calculating the wind profile within canopy. The model has been validated against field measurements in off-line simulations. The desirable model′s performance leads to the conclusion that the IAP94 is able to reproduce the main physical mechanisms governing the energy and water balances in the global land surface. Part II of the present study will concern the validation in a 3-D experiment coupled with the IAP Two-Level AGCM. 展开更多
关键词 Land Surface model Off-line Experiment validation
在线阅读 下载PDF
Systematic Geometric Error Modeling for Workspace Volumetric Calibration of a 5-axis Turbine Blade Grinding Machine 被引量:30
17
作者 Abdul Wahid Khan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期604-615,共12页
A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficien... A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process. Although its topology is RPPPR (P: prismatic; R: rotary), its design is quite distinct from the competitive machine tools. As error quantification is the only way to investigate, maintain and improve its accuracy, calibra- tion is recommended for its performance assessment and acceptance testing. Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors of workpiece and cutting tool. 39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume. Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis. 展开更多
关键词 5-axis machine tools calibration modeling geometric errors kinematics homogenous transformation matrices
原文传递
High-speed wind tunnel test of the CAE aerodynamic validation model 被引量:12
18
作者 Roy GEBBINK Ganglin WANG Min ZHONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第3期439-447,共9页
For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test... For the purpose of establishing and validating aerodynamic performance predictions at transonic Mach numbers, a wind tunnel test was conducted in the High-Speed Tunnel(HST) of the German-Dutch Wind Tunnels. The test article is the aerodynamic validation model from the Chinese Aeronautical Establishment, which is a full-span scale model representation of a business jet aircraft. The wind tunnel test comprised of parallel deployments of balance, pressures, infrared thermography, and model marker measurement techniques. Dedicated investigations with a dummy support were conducted as well, in order to derive and correct for the interference that the support system imposed on the overall model loads. This enabled the establishment of a comprehensive dataset in which the steady overall model loads, the wing load distribution, the state of the wing boundary layer, and the aeroelastic wing shape were quantified for conditions up to and beyond the cruise Mach number of 0.85. 展开更多
关键词 Wind tunnel test Aerodynamic validation model model deformation Support interference
原文传递
Mathematical Model and Experiment Validation of Fluid Torque by Shear Stress under Influence of Fluid Temperature in Hydro-viscous Clutch 被引量:8
19
作者 CUI Hongwei YAO Shouwen +2 位作者 YAN Qingdong FENG Shanshan LIU Qian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期32-40,共9页
The current design of hydro-viscous clutch(HVC) in tracked vehicle fan transmission mainly focuses on high-speed and high power. However, the fluid torque under the influence of fluid temperature can not be predicte... The current design of hydro-viscous clutch(HVC) in tracked vehicle fan transmission mainly focuses on high-speed and high power. However, the fluid torque under the influence of fluid temperature can not be predicted accurately by conventional mathematical model or experimental research. In order to validate the fluid torque of HVC by taking the viscosity-temperature characteristic of fluid into account, the test rig is designed. The outlet oil temperature is measured and fitted with different rotation speed, oil film thickness, oil flow rate, and inlet oil temperature. Meanwhile, the film torque can be obtained. Based on Navier-Stokes equations and the continuity equation, the mathematical model of fluid torque is proposed in cylindrical coordinate. Iterative method is employed to solve the equations. The radial and tangential speed distribution, radial pressure distribution and theoretical flow rate are determined and analyzed. The models of equivalent radius and fluid torque of friction pairs are introduced. The experimental and theoretical results indicate that tangential speed distribution is mainly determined by the relative rotating speed between the friction plate and the separator disc. However, the radial speed distribution and pressure distribution are dominated by pressure difference at the lower rotating speed. The oil film fills the clearance and the film torque increases with increasing rotating speed. However, when the speed reaches a certain value, the centrifugal force will play an important role on the fluid distribution. The pressure is negative at the outer radius when inlet flow rate is less than theoretical flow, so the film starts to shrink which decreases the film torque sharply. The theoretical fluid torque has good agreement with the experimental data. This research proposes a new fluid torque mathematical model which may predict the film torque under the influence of temperature more accurately. 展开更多
关键词 hydro-viscous clutch fluid torque by shear stress experiment validation mathematical model
在线阅读 下载PDF
A New Method with High Confidence for Validation of Computer Simulation Models of Flight Systems 被引量:5
20
作者 Zhou XianminShanghai Research & Development Centre, 412 Guil in Road, Shanghai 200233, P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1993年第4期43-52,共10页
Computer simulation models may by used to gain further information about missile performance variability. Model validation is an important aspect of the test program for a missile system. Validation provides a basis f... Computer simulation models may by used to gain further information about missile performance variability. Model validation is an important aspect of the test program for a missile system. Validation provides a basis for confidence in the model's results and is a necessary step if the model is to be used to draw inference about the behavior of the real missile. This paper is a review of methods useful for validation of computer simulation models of missile systems and provides a new method with high degree of confidence for validation of computer simulation models of missile systems. Some examples of the use of the new method in validating computer simulation models are given. 展开更多
关键词 model validation model credibility Simulation modeling System simulation.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部