期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Stochastic model updating using distance discrimination analysis 被引量:5
1
作者 Deng Zhongmin Bi Sifeng Sez Atamturktur 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1188-1198,共11页
This manuscript presents a stochastic model updating method, taking both uncertainties in models and variability in testing into account. The updated finite element(FE) models obtained through the proposed technique... This manuscript presents a stochastic model updating method, taking both uncertainties in models and variability in testing into account. The updated finite element(FE) models obtained through the proposed technique can aid in the analysis and design of structural systems. The authors developed a stochastic model updating method integrating distance discrimination analysis(DDA) and advanced Monte Carlo(MC) technique to(1) enable more efficient MC by using a response surface model,(2) calibrate parameters with an iterative test-analysis correlation based upon DDA, and(3) utilize and compare different distance functions as correlation metrics. Using DDA, the influence of distance functions on model updating results is analyzed. The proposed stochastic method makes it possible to obtain a precise model updating outcome with acceptable calculation cost. The stochastic method is demonstrated on a helicopter case study updated using both Euclidian and Mahalanobis distance metrics. It is observed that the selected distance function influences the iterative calibration process and thus, the calibration outcome, indicating that an integration of different metrics might yield improved results. 展开更多
关键词 Distance discrimination analysis model updating model validation Monte Carlo simulation uncertainty
原文传递
Static Frame Model Validation with Small Samples Solution Using Improved Kernel Density Estimation and Confidence Level Method 被引量:7
2
作者 ZHANG Baoqiang CHEN Guoping GUO Qintao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期879-886,共8页
An improved method using kernel density estimation (KDE) and confidence level is presented for model validation with small samples. Decision making is a challenging problem because of input uncertainty and only smal... An improved method using kernel density estimation (KDE) and confidence level is presented for model validation with small samples. Decision making is a challenging problem because of input uncertainty and only small samples can be used due to the high costs of experimental measurements. However, model validation provides more confidence for decision makers when improving prediction accuracy at the same time. The confidence level method is introduced and the optimum sample variance is determined using a new method in kernel density estimation to increase the credibility of model validation. As a numerical example, the static frame model validation challenge problem presented by Sandia National Laboratories has been chosen. The optimum bandwidth is selected in kernel density estimation in order to build the probability model based on the calibration data. The model assessment is achieved using validation and accreditation experimental data respectively based on the probability model. Finally, the target structure prediction is performed using validated model, which are consistent with the results obtained by other researchers. The results demonstrate that the method using the improved confidence level and kernel density estimation is an effective approach to solve the model validation problem with small samples. 展开更多
关键词 model validation small samples uncertainty analysis kernel density estimation confidence level prediction
原文传递
Evaluation of alternative surface runoff accounting procedures using SWAT model
3
作者 Haw Yen Michael J.White +2 位作者 Jaehak Jeong Mazdak Arabi Jeffrey G.Arnold 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2015年第3期54-68,共15页
For surface runoff estimation in the Soil and Water Assessment Tool(SWAT)model,the curve number(CN)procedure is commonly adopted to calculate surface runoff by dynamically updating CN values based on antecedent soil m... For surface runoff estimation in the Soil and Water Assessment Tool(SWAT)model,the curve number(CN)procedure is commonly adopted to calculate surface runoff by dynamically updating CN values based on antecedent soil moisture condition(SCSI)in field.From SWAT2005 and onward,an alternative approach has become available to apply the CN method by relating the runoff potential to daily evapotranspiration(SCSII).While improved runoff prediction with SCSII has been reported in several case studies,few investigations have been made on its influence to water quality output or on the model uncertainty associated with the SCSII method.The objectives of the research were:(1)to quantify the improvements in hydrologic and water quality predictions obtained through different surface runoff estimation techniques;and(2)to examine how model uncertainty is affected by combining different surface runoff estimation techniques within SWAT using Bayesian model averaging(BMA).Applications of BMA provide an alternative approach to investigate the nature of structural uncertainty associated with both CN methods.Results showed that SCSII and BMA associated approaches exhibit improved performance in both discharge and total NO3 predictions compared to SCSI.In addition,the application of BMA has a positive effect on finding well performed solutions in the multi-dimensional parameter space,but the predictive uncertainty is not evidently reduced or enhanced.Therefore,we recommend additional future SWAT calibration/validation research with an emphasis on the impact of SCSII on the prediction of other pollutants. 展开更多
关键词 Soil and Water Assessment Tool(SWAT) curve number method Bayesian model averaging uncertainty analysis hydrology water quality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部