期刊文献+
共找到431篇文章
< 1 2 22 >
每页显示 20 50 100
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane 被引量:2
1
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection Large-scale model test
原文传递
Hybrid Model Testing Technique for Deep-Sea Platforms Based on Equivalent Water Depth Truncation 被引量:4
2
作者 张火明 杨建民 肖龙飞 《China Ocean Engineering》 SCIE EI 2007年第3期401-416,共16页
In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tn... In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented. 展开更多
关键词 hybrid model testing technique equivalent water depth truncation FPSO hydrodynamic response TURRET
在线阅读 下载PDF
Model Testing for Ship Hydroelasticity: A Review and Future Trends 被引量:1
3
作者 焦甲龙 任慧龙 陈超核 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第6期641-650,共10页
Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are pr... Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are presented in this paper. The research highlights with respect to ship hydroelasticity and key points in model testing are summarized at first. Then testing techniques including laboratory tank test and full-scale sea trial are reviewed, and both their advantages and disadvantages are analyzed comprehensively. Based on the conventional testing approaches, a state-of-the-art testing approach which includes performing tests using large-scale model at sea is proposed. Furthermore, recommendations towards the further development of ship hydroelasticity tests are forecasted and discussed. 展开更多
关键词 ship hydroelasticity wave loads model testing sea trial large-scale model
原文传递
On composite foundation with different vertical reinforcing elements under vertical loading:a physical model testing study 被引量:2
4
作者 Xian-zhi WANG Jun-jie ZHENG Jian-hua YIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第2期80-87,共8页
Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of ... Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only. 展开更多
关键词 Steel pipe pile Concrete pile Lime column Sand column Composite foundation model test Pile-soil stress ratio
原文传递
Model tests and numerical analysis of emergency treatment of cohesionless soil landslide with quick-setting polyurethane 被引量:1
5
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 HUANG Rufa CAI Zhenjie GAO Anhua 《Journal of Mountain Science》 2025年第1期110-121,共12页
Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the... Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live. 展开更多
关键词 Cohesionless soil landslide POLYURETHANE Emergency treatment Reinforcement effect model test Finite element analysis
原文传递
Investigation on the Ice Load on a Cylinder Vertically Breaking through Model Ice Sheet from Underneath
6
作者 ZHAO Wei−hang TIAN Yu−kui +3 位作者 JI Shao−peng GANG Xu−hao YU Chao−ge KONG Shuai 《船舶力学》 北大核心 2025年第6期964-975,共12页
Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical e... Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters. 展开更多
关键词 CYLINDER model test failure mode crack propagation ice load numerical modeling
在线阅读 下载PDF
Development of a Model Material Suitable for Reservoir Landslide Model Tests
7
作者 Minghao Miao Huiming Tang +4 位作者 Sha Lu Changdong Li Kun Fang Yixiao Gu Chunyan Tang 《Journal of Earth Science》 2025年第5期1989-2004,共16页
In the physical model test of landslides,the selection of analogous materials is the key,and it is difficult to consider the similarity of mechanical properties and seepage performance at the same time.To develop a mo... In the physical model test of landslides,the selection of analogous materials is the key,and it is difficult to consider the similarity of mechanical properties and seepage performance at the same time.To develop a model material suitable for analysing the deformation and failure of reservoir landslides,based on the existing research foundation of analogous materials,5 materials and 5 physical-mechanical parameters were selected to design an orthogonal test.The factor sensitivity of each component ratio and its influence on the physical-mechanical indices were studied by range analysis and stepwise regression analysis,and the proportioning method was determined.Finally,the model material was developed,and a model test was carried out considering Huangtupo as the prototype application.The results showed that(1)the model material composed of sand,barite powder,glass beads,clay,and bentonite had a wide distribution of physical-mechanical parameters,which could be applied to model tests under different conditions;(2)the physical-mechanical parameters of analogous materials matched the application prototype;and(3)the mechanical properties and seepage performance of the model material sample met the requirements of reservoir landslide model tests,which could be used to simulate landslide evolution and analyse the deformation process. 展开更多
关键词 analogous material physical model test reservoir landslide range analysis stepwise regression stage division PIVlab LANDSLIDES engineering geology
原文传递
Physical and numerical modeling of a framed anti-sliding structure for a mountainous railway line
8
作者 QIU Ruizhe LIU Kaiwen +3 位作者 YANG Zhixiang MA Chiyuan XIAO Jian SU Qian 《Journal of Southeast University(English Edition)》 2025年第1期12-19,共8页
To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force... To ensure the operational safety of railways in the landslide-prone areas of mountainous regions,a large-scale model test and numerical simulation were conducted to study the bending moment distribution,internal force distribution,deformation development,and crack propagation characteristics of a framed anti-sliding structure(FAS)under landslide thrust up to the point of failure.Results show that the maximum bending moment and its increase rate in the fore pile are greater than those in the rear pile,with the maximum bending moment of the fore pile approximately 1.1 times that of the rear pile.When the FAS fails,the displacement at the top of the fore pile is significantly greater,about 1.27 times that of the rear pile in the experiment.Major cracks develop at locations corresponding to the peak bending moments.Small transverse cracks initially appear on the upper surface at the intersection between the primary beam and rear pile and then spread to the side of the structure.At the failure stage,major cracks are observed at the pil-beam intersections and near the anchor points.Strengthening flexural stiffness at intersections where major cracks occur can improve the overall thrust-deformation coordination of the FAS,thereby maximizing its performance. 展开更多
关键词 mountainous railway SLOPE framed anti-sliding structure model test finite element modeling mechanical responses
在线阅读 下载PDF
Dynamic modeling of minimum mass of pore-gas for triggering landslide in stable gentle soil slope
9
作者 Xingyu Kang Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期652-670,共19页
This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a ... This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis. 展开更多
关键词 LANDSLIDE Gentle soil slope Physical model test Minimum pore-gas mass Soil upheaval Dynamic modeling
在线阅读 下载PDF
Structure-type rockburst in deep tunnels: Physical modeling and numerical simulation
10
作者 Guo-Qiang Zhu Yan Zhang +3 位作者 Shaojun Li Yang-Yi Zhou Jialiang Zhou Minglang Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3502-3523,共22页
Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that ... Structure-type rockbursts frequently occur in deep tunnels,with structural planes and stress conditions being critical factors in their formation.In this study,we utilized specially developed analogous materials that exhibit the high brittleness and strength characteristics of deep hard rock to construct physical models representing different types of structural planes,including composite,exposed,non-exposed,and throughgoing structural planes.Physical simulation experiments were conducted on structuretype rockbursts in deep horseshoe-shaped tunnels,focusing on strain differentiation characteristics,critical triggering conditions,critical crack opening displacement,the incubation process,the reduction effects of structural planes on failure intensity,and formation mechanisms.These experiments were complemented by acoustic and optical monitoring,as well as discrete element numerical simulations,to provide a comprehensive analysis.The results revealed that the most significant strain heterogeneity in the surrounding rock occurs at the tip of the structural plane along the tunnel's minimum principal stress direction,driven by the combined effects of tensile and shear forces.We quantitatively determined the critical stress and strain conditions for structure-type rockbursts and evaluated the intensity of rockbursts induced by different structural planes using critical crack opening displacement(COD)values,the uniformity coefficient,and the curvature coefficient.Analysis of acoustic emission events,including frequency,amplitude,and b-value,indicated that the macro-fracture process is governed by both the principal stress differential and the characteristics of the structural plane.Furthermore,using the bearing capacity reduction coefficient,we found that exposed structural planes have the most significant weakening effect on rock mass strength,followed by non-exposed and throughgoing structural planes.The analysis of average frequency(AF)and rise angle(RA)parameters revealed a close correlation between the failure modes of structure-type rockbursts,the rock mass structure,and the stress levels.These findings provide critical theoretical support for the prediction and prevention of structure-type rockburst disasters. 展开更多
关键词 Deep tunnel ROCKBURST Structural plane Strain heterogeneity Physical model test Particle flow code(PFC)
在线阅读 下载PDF
CFD-based Determination of Load Cell Capacity for Submarine HPMM Model Tests
11
作者 Aliasghar Moghaddas Hossein nourozi +1 位作者 Morteza Ebrahimi Alireza Naderi 《哈尔滨工程大学学报(英文版)》 2025年第5期1064-1074,共11页
Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and... Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and designing the most suitable laboratory equipment for towing tanks.A computational fluid dynamics(CFD)-based method is implemented to determine the loads acting on the towing facility of the submarine model.A reversed topology is also used to ensure the appropriateness of the load cells in the developed method.In this study,the numerical simulations were evaluated using the experimental results of the SUBOFF benchmark submarine model of the Defence Advanced Research Projects Agency.The maximum and minimum loads acting on the 2.5-meter submarine model were measured by determining the body’s lightest and heaviest maneuvering test scenarios.In addition to having sufficient endurance against high loads,the precision in measuring the light load was also investigated.The horizontal planar motion mechanism(HPMM)facilities in the National Iranian Marine Laboratory were developed by locating the load cells inside the submarine model.The results were presented as a case study.A numerical-based method was developed to obtain the appropriate load measurement facilities.Load cells of HPMM test basins can be selected by following the two-way procedure presented in this study. 展开更多
关键词 Captive model tests Hydrodynamic coefficients SUBMARINE Computational fluid dynamics Horizontal planar motion mechanism Load cell capacity
在线阅读 下载PDF
Synergistic reinforcement using pressure releasing and energy absorbing method under hard roof:Physical model test
12
作者 Qi Wang Jiting Liu +3 位作者 Bei Jiang Zhenhua Jiang Yusong Deng Chuanjie Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5845-5860,共16页
During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When t... During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When the roof eventually collapses,the accumulated energy is released instantaneously,exerting a strong impact on the roadway.To address this issue,we proposed the synergistic control method of directional comprehensive pressure relief and energy-absorbing support(PREA)for roadways with hard roofs.In this study,we developed a three-dimensional physical model test apparatus for roof cutting and pressure relief.The 122108 ventilation roadway at the Caojiatan Coal Mine,which has a thick and hard roof,was taken as the engineering example.We analyzed the evolution patterns of stress and displacement in both the stope and the roadway surrounding rocks under different schemes.The PREA reinforcement mechanism for the roadway was investigated through comparative model tests between the new and original methods.The results showed that,compared to the original method,the new method reduced surrounding rock stress by up to 60.4%,and the roadway convergence decreased by up to 52.1%.Based on these results,we proposed corresponding engineering recommendations,which can guide fieldreinforcement design and application.The results demonstrate that the PREA method effectively reduces stress and ensures the safety and stability of the roadway. 展开更多
关键词 Directional comprehensive pressure relief High-strength support Three-dimensional model test Reinforcing method Synergistic control
在线阅读 下载PDF
True triaxial modeling test of high-sidewall underground caverns subjected to dynamic disturbances
13
作者 Chuanqing Zhang Jinping Ye +3 位作者 Ning Liu Qiming Xie Mingming Hu Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2109-2132,共24页
Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessm... Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessment of the operational safety of such caverns requires an in-depth understanding of the response characteristics of the rock mass subjected to dynamic disturbances.To address this issue,we conducted true triaxial modeling tests and dynamic numerical simulations on large underground caverns to investigate the impact of static stress levels,dynamic load parameters,and input directions on the response characteristics of the surrounding rock mass.The findings reveal that:(1)When subjected to identical incident stress waves and static loads,the surrounding rock mass exhibits the greatest stress response during horizontal incidence.When the incident direction is fixed,the mechanical response is more pronounced at the cavern wall parallel to the direction of dynamic loading.(2)A high initial static stress level specifically enhances the impact of dynamic loading.(3)The response of the surrounding rock mass is directly linked to the amplitude of the incident stress wave.High amplitude results in tensile damage in regions experiencing tensile stress concentration under static loading and shear damage in regions experiencing compressive stress concentration.These results have significant implications for the evaluation and prevention of dynamic disasters in the surrounding rock of underground caverns experiencing dynamic disturbances. 展开更多
关键词 High-sidewall underground cavern modeling test Coupling effect of dynamic and static loads Incident wave Response characteristics Risk coefficient
在线阅读 下载PDF
Landslide model tests with a miniature 2D principal stress sensor
14
作者 Kun Fang Yulei Fu +3 位作者 Huiming Tang Tangzhe Gao Pengju An Qiong Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期94-105,共12页
Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model test... Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model tests is proposed.The fundamental principle and design of the sensor are demonstrated.The sensor comprises three earth pressure gages and one gyroscope,with the utilization of three-dimensional(3D)printing technology.The difficulties of installation location during model preparation and sensor rotation during testing can be effectively overcome using this sensor.Two different arrangements of the sensors are tested in verification tests.Additionally,the application of the sensor in an excavated-induced slope model is tested.The results demonstrate that the sensor exhibits commendable performance and achieves a desirable level of accuracy,with a principal stress angle error of±5°in the verification tests.The stress transformation of the slope model,generated by excavation,is demonstrated in the application test by monitoring the two miniature principal stress(MPS)sensors.The sensor has a significant potential for measuring primary stress in landslide model tests and other geotechnical model experiments. 展开更多
关键词 LANDSLIDE model test Principal stress(PS) Stress measurement
在线阅读 下载PDF
Dynamic characterization of viscoelasticity during polymer flooding:A two-phase numerical well test model and field study
15
作者 Yang Wang Shi-Long Yang +3 位作者 Hang Xie Yu Jiang Shi-Qing Cheng Jia Zhang 《Petroleum Science》 2025年第6期2493-2501,共9页
Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer... Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model. 展开更多
关键词 Polymer flooding Two-phase flow Numerical well test model Viscoelastic characteristic Nonlinear flow Near-well blockage
原文传递
Review of transparent soil model testing technique for underground construction:Ground visualization and result digitalization 被引量:6
16
作者 Wengang Zhang Xin Gu +2 位作者 Wenhan Zhong Zhitao Ma Xuanming Ding 《Underground Space》 SCIE EI 2022年第4期702-723,共22页
In geotechnical engineering,the transparent soil(also called transparent media)technique is an effective tool for conducting experimental tests and investigating the displacement characteristics and stress distributio... In geotechnical engineering,the transparent soil(also called transparent media)technique is an effective tool for conducting experimental tests and investigating the displacement characteristics and stress distribution of soils.It plays a vital role in the observation of internal soil deformations.This study aims to briefly review the current state of some of the common materials used to formulate transparent soil models and the application of the transparent soil technique to underground construction over the last 20 years.To this end,the basic concepts of transparent soils are introduced.Then,several representative applications of transparent soil in underground construction(i.e.,soil deformations induced by the penetration of pile foundations,tunnel excavation-induced movements,and structural responses caused by braced excavations)are presented.Because some research gaps may exist,certain potential research topics are proposed.This review can serve as a guideline for researchers performing experiments using transparent soils. 展开更多
关键词 Transparent soil technique model testing Underground construction
在线阅读 下载PDF
Evaluating the safety of high arch dams with fractures based on numerical simulation and geomechanical model testing 被引量:3
17
作者 HE Zhu LIU YaoRu +1 位作者 PAN YuanWei YANG Qiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第10期1648-1659,共12页
It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stabi... It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stability and the extension probability of fractures. Numerical simulation forecasted the dam displacement and the operating behavior based on the parameters obtained from the back analysis. Geomechanical model test was based on small block masonry and the models with or without fractures were both tested. The results show that the deformation of dams is in line with general rules at a normal water load and the extension probability of the existing fractures is very small, which has no significant impact on the global stability of dams. Moreover, the failure process of arch dams with the existing fractures in dams at overload scenarios is similar to the one without the embedded fractures, i.e., the failure crack which is not caused by the existing fractures inside comes into being on the surface of dams itself. 展开更多
关键词 numerical simulation geomechanical model test safety evaluation arch dams FRACTURES
原文传递
On modeling approach for embedded real-time software simulation testing 被引量:6
18
作者 Yin Yongfeng Liu Bin Zhong Deming Jiang Tongmin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期420-426,共7页
Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and emb... Modeling technology has been introduced into software testing field. However, how to carry through the testing modeling effectively is still a difficulty. Based on combination of simulation modeling technology and embedded real-time software testing method, the process of simulation testing modeling is studied first. And then, the supporting environment of simulation testing modeling is put forward. Furthermore, an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing (SUT), test case, testing scheduling, and testing system service is brought forward. Finally, the formalized description and execution system of testing models are given, with which we can realize real-time, closed loop, mad automated system testing for embedded real-time software. 展开更多
关键词 embedded real-time software software testing testing modeling SIMULATION
在线阅读 下载PDF
Model Test Study on Response of Weathered Rock Slope to Rainfall Infiltration under Different Conditions 被引量:2
19
作者 Cong Li Rongtang Zhang +6 位作者 Jiebing Zhu Bo Lu Xiaowei Wang Fangling Xu Xiaoke Shen Jiesheng Liu Weizhen Cai 《Journal of Earth Science》 SCIE CAS CSCD 2024年第4期1316-1333,共18页
Weathered rock(especially granite)slopes are prone to failure under the action of rainfall,making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention.In this st... Weathered rock(especially granite)slopes are prone to failure under the action of rainfall,making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention.In this study,a series of model tests of weathered rock slope under different conditions were conducted.The matric suction,volumetric water content,earth pressure and deformation of slope were monitored in real time during rainfall.The response of the slope to rainfall infiltration,failure process and failure mode of slope under different conditions were analyzed,and the early warning criterion for the failure of weathered rock slope caused by rainfall was studied.The results show that the slope deformation evolution process under rainfall condition was closely related to the dissipation of matric suction.When the distribution of the matrix suction(or water content)of slope met the condition that the resistance to sliding of the slip-mass was overcome,the displacement increased sharply and landslide occurred.Three factors including rainfall process,lithologic condition and excavation condition significantly affect the response of weathered rock slope to rainfall.It can be found from the test results under different conditions that compared with intermittent rainfall condition,the rainfall intensity and infiltration depth were smaller when the slope entering accelerated deformation stage under the condition of incremental rainfall.The accumulated rainfall when weathered clastic landslide occurring was greater than that of weathered granite,which results in greater disaster risk.The excavation angle and moisture distribution of a slope were the main factors affecting the stability of a slope.In addition,the evolution processes and critical displacement velocities of slopes were studied by combining the deformation curves and matrix suction curves,which can be used as reference for early warning of rainfall-induced weathered rock landslide. 展开更多
关键词 weathered rock slope model test RAINFALL early warning unsaturated soil
原文传递
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test 被引量:2
20
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability Physical model test Surface 3D deformation Stability identification
原文传递
上一页 1 2 22 下一页 到第
使用帮助 返回顶部