The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of l...The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of liquid dynamic recommended by International Towing Tank Conference ( ITTC), the results were analyzed, bias limits and precision limits were calculated and total uncertainty was estimated. The total uncertainty of six tests on ship model vertical center of gravity is is 0. 16% of the mean value, and the total uncertainty of six tests on ship model transverse moment of inertia is 5.66% of the mean value. The test results show that the total uncertainty of both the multiple tests and the single test is from the precision limits of ship model vertical center of gravity and transverse moment of inertia tests. Thus, the improved measurement system stability can enormously decrease the total uncertainty of multiple tests and the single test.展开更多
Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are pr...Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are presented in this paper. The research highlights with respect to ship hydroelasticity and key points in model testing are summarized at first. Then testing techniques including laboratory tank test and full-scale sea trial are reviewed, and both their advantages and disadvantages are analyzed comprehensively. Based on the conventional testing approaches, a state-of-the-art testing approach which includes performing tests using large-scale model at sea is proposed. Furthermore, recommendations towards the further development of ship hydroelasticity tests are forecasted and discussed.展开更多
After the anti-collision facility construction of Wanzhou Yangtze River Highway Bridge, the conditions of navigation in bridge area are complex. In order to study the navigation conditions of the reach and layout opti...After the anti-collision facility construction of Wanzhou Yangtze River Highway Bridge, the conditions of navigation in bridge area are complex. In order to study the navigation conditions of the reach and layout optimization measures, ensuring the safety of the ship navigation test has been carried out on the ship model navigation in the bridge area. According to the requirements of the maximum safety limit of the ship model test, the paper puts forward the best route, the control method and the difficulty of navigation through the analysis of the test results, and finally gives the recommendations and suggestions.展开更多
This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new wa...This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.展开更多
It is well known that model test is one of approaches to investigate the maneuverability of vessels and the correlative method is an important problem of model test for vessels with large scale. Some of correlative pr...It is well known that model test is one of approaches to investigate the maneuverability of vessels and the correlative method is an important problem of model test for vessels with large scale. Some of correlative problems,which should be solved with care in model test,are presented from analysis of the similarity principle for the ship maneuverability in this paper.A corrective method of appropriate angle of rudder is provided based on the result of maneuverability model test for a tanker with large scale and the corresponding prediction of the maneuverability for full scale tanker is satisfactory in view of engineering practice.展开更多
Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant e...Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant effects on the kinds of propellers and motor power needed. In research on this topic, model tests and full-scale tests on ships have thus far been the primary approaches. In recent years, the application of the finite element method(FEM) has also attracted interest. Some researchers have conducted numerical simulations on ship–ice interactions using the fluid–structure interaction(FSI) method. This study used this method to predict and analyze the resistance of an ice-going ship, and compared the results with those of model ship tests conducted in a towing tank with synthetic ice to discuss the feasibility of the FEM. A numerical simulation and experimental methods were used to predict the brash ice resistance of an ice-going container ship model in a condition with three concentrations of brash ice(60%, 80%, and 90%). A comparison of the results yielded satisfactory agreement between the numerical simulation and the experiments in terms of both observed phenomena and resistance values, indicating that the proposed numerical simulation has significant potential for use in related studies in the future.展开更多
Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-...Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.展开更多
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low...The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.展开更多
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ...A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.展开更多
This paper presents the results of an experimental investigation dealing with the effect of bow overhang extensions on the quantity of shipping water over the foredeck in case of ships advancing in regular head waves....This paper presents the results of an experimental investigation dealing with the effect of bow overhang extensions on the quantity of shipping water over the foredeck in case of ships advancing in regular head waves. To perform this investigation, a series of free-running tests was conducted in regular waves using an experimental model of a multipurpose cargo ship to quantify the amount of shipping water. The tests were performed on five bow overhang variants with several combinations of wavelength and ship speed conditions. It was observed that the quantity of shipping water was affected by some parameters such as wavelength, ship speed, and bow shape in terms of an overhang extension. The results show the significant influence of an overhang extension, which is associated with the bow flare shape, on the occurrence of water shipping. These results involve the combined incoming regular waves and model speed.展开更多
文摘The usability of test results of ship model vertical center of gravity and transverse moment of inertia is generally depends on its uncertainty. Referring to the guidelines for uncertainty analysis in examination of liquid dynamic recommended by International Towing Tank Conference ( ITTC), the results were analyzed, bias limits and precision limits were calculated and total uncertainty was estimated. The total uncertainty of six tests on ship model vertical center of gravity is is 0. 16% of the mean value, and the total uncertainty of six tests on ship model transverse moment of inertia is 5.66% of the mean value. The test results show that the total uncertainty of both the multiple tests and the single test is from the precision limits of ship model vertical center of gravity and transverse moment of inertia tests. Thus, the improved measurement system stability can enormously decrease the total uncertainty of multiple tests and the single test.
基金the National Natural Science Foundations of China(Nos.51679049 and 51079034)
文摘Conducting model experiments is an effective and reliable way in the investigation of ship hydrodynamic and hydroelastic behaviors. A survey of model testing techniques for ship hydroelasticity and its prospect are presented in this paper. The research highlights with respect to ship hydroelasticity and key points in model testing are summarized at first. Then testing techniques including laboratory tank test and full-scale sea trial are reviewed, and both their advantages and disadvantages are analyzed comprehensively. Based on the conventional testing approaches, a state-of-the-art testing approach which includes performing tests using large-scale model at sea is proposed. Furthermore, recommendations towards the further development of ship hydroelasticity tests are forecasted and discussed.
文摘After the anti-collision facility construction of Wanzhou Yangtze River Highway Bridge, the conditions of navigation in bridge area are complex. In order to study the navigation conditions of the reach and layout optimization measures, ensuring the safety of the ship navigation test has been carried out on the ship model navigation in the bridge area. According to the requirements of the maximum safety limit of the ship model test, the paper puts forward the best route, the control method and the difficulty of navigation through the analysis of the test results, and finally gives the recommendations and suggestions.
文摘This paper presents the test of a ship model for the design of a backward-bent duct oscillating water column type wave energy conversion system, to supply electric power for a light ship. This system suggests a new way to produce electric power automatically for large light ships.
文摘It is well known that model test is one of approaches to investigate the maneuverability of vessels and the correlative method is an important problem of model test for vessels with large scale. Some of correlative problems,which should be solved with care in model test,are presented from analysis of the similarity principle for the ship maneuverability in this paper.A corrective method of appropriate angle of rudder is provided based on the result of maneuverability model test for a tanker with large scale and the corresponding prediction of the maneuverability for full scale tanker is satisfactory in view of engineering practice.
基金financially supported by the National Natural Science Foundation of China(Grant No.51679052)the Natural Science Foundation of Heilongjiang Province of China(Grant No.E2018026)the Defense Industrial Technology Development Program(Grant No.JCKY2016604B001)
文摘Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant effects on the kinds of propellers and motor power needed. In research on this topic, model tests and full-scale tests on ships have thus far been the primary approaches. In recent years, the application of the finite element method(FEM) has also attracted interest. Some researchers have conducted numerical simulations on ship–ice interactions using the fluid–structure interaction(FSI) method. This study used this method to predict and analyze the resistance of an ice-going ship, and compared the results with those of model ship tests conducted in a towing tank with synthetic ice to discuss the feasibility of the FEM. A numerical simulation and experimental methods were used to predict the brash ice resistance of an ice-going container ship model in a condition with three concentrations of brash ice(60%, 80%, and 90%). A comparison of the results yielded satisfactory agreement between the numerical simulation and the experiments in terms of both observed phenomena and resistance values, indicating that the proposed numerical simulation has significant potential for use in related studies in the future.
基金Supported by the Directorate for Research and Community Service,University of Indonesia(RUUI Research Laboratory 2010),Jakarta,Indonesia
文摘Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.
基金Supported by Ministry of Industry and Information(No.K24097)
文摘The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.
基金supported by the National Natural Science Foundation of China(50879090)the Key Research Program of Hydrodynamics of China(9140A14030712JB11044)
文摘A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.
文摘This paper presents the results of an experimental investigation dealing with the effect of bow overhang extensions on the quantity of shipping water over the foredeck in case of ships advancing in regular head waves. To perform this investigation, a series of free-running tests was conducted in regular waves using an experimental model of a multipurpose cargo ship to quantify the amount of shipping water. The tests were performed on five bow overhang variants with several combinations of wavelength and ship speed conditions. It was observed that the quantity of shipping water was affected by some parameters such as wavelength, ship speed, and bow shape in terms of an overhang extension. The results show the significant influence of an overhang extension, which is associated with the bow flare shape, on the occurrence of water shipping. These results involve the combined incoming regular waves and model speed.