Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys...Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.展开更多
Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is base...Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.展开更多
A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.I...A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.It allows the reconstructed shape to vary more than that reconstructed in the standard ASM shape space,hence it is more expressive in representing shapes in real life.Then a cost function is developed,based on a study on the search process.An optimal searching method using the feedback information provided by the evaluation cost is proposed to improve the performance of ASM alignment.Experimental results show that the proposed OSS can offer the maximum shape variation with reserving the principal information and a unique local optimal shape is acquired after optimal searching.The combination of OSS and optimal searching can improve the ASM performance greatly.展开更多
Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull st...Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull structures canbe straightforwardly predictedfromthe head,but a fullheadshapemust be available.Most scanning devices can only capture the face shape.Consequently,a method that can quickly predict the full skull structures from the face is necessary.In this study,a novel face-to-skull prediction procedure is introduced.Given a threedimensional(3-D)face shape,a skull mesh could be predicted so that its shape would statistically fit the face shape.Several prediction strategies were conducted.The optimal prediction strategy with its optimal hyperparameters was experimentally selected through a ten-fold cross-validation with 329 subjects.As a result,the face-to-skull prediction strategy based on the relations between face head shape and back head shape,between face head shape and face skull shape,and between back head shape and back skull shape was optimal.The optimal mean mesh-to-mesh distance(mean±SD)between the predicted skull shapes and the ground truth skull shapes was 1.93±0.36 mm,and those between the predicted skull meshes and the ground truth skull meshes were 2.65±0.36 mm.Moreover,the prediction errors in back-skull and muscle attachment regions were 1.7432±0.5217 mm and 1.7671±0.3829 mm,respectively.These errors are within the acceptable range of facial muscle simulation.In perspective,this method will be employed in our clinical decision support system to enhance the accuracy of biomechanical head simulation based on a stereo fusion camera system.Moreover,we will also enhance the accuracy of the face-to-skull prediction by diversifying the dataset intomore varied geographical regions and genders.More types of parameters,such as BodyMass Index(BMI),coupled with head-to-skull thicknesses,will be fused with the proposed face-to-skull procedure.展开更多
Lumbar degeneration leads to changes in geometry and density distribution of vertebrae,which could further influence the mechanical property and behavior.This study aimed to quantitatively describe the variations in s...Lumbar degeneration leads to changes in geometry and density distribution of vertebrae,which could further influence the mechanical property and behavior.This study aimed to quantitatively describe the variations in shape and density distribution for degenerated vertebrae by statistical models,and utilized the specific statistical shape model(SSM)/statistical appearance model(SAM)modes to assess compressive strength and fracture behavior.Highly detailed SSM and SAM were developed based on the 75 L1 vertebrae of elderly men,and their variations in shape and density distribution were quantified with principal component(PC)modes.All vertebrae were classified into mild(n=22),moderate(n=29),and severe(n=24)groups according to the overall degree of degeneration.Quantitative computed tomography-based finite element analysis was used to calculate compressive strength for each L1 vertebra,and the associations between compressive strength and PC modes were evaluated by multivariable linear regression(MLR).Moreover,the distributions of equivalent plastic strain(PEEQ)for the vertebrae assigned with the first modes of SSM and SAM at mean±3SD were investigated.The Leave-One-Out analysis showed that our SSM and SAM had good performance,with mean absolute errors of 0.335±0.084 mm and 64.610±26.620 mg/cm3,respectively.A reasonable accuracy of bone strength prediction was achieved by using four PC modes(SSM 1,SAM 1,SAM 4,and SAM 5)to construct the MLR model.Furthermore,the PEEQ values were more sensitive to degeneration-related variations of density distribution than those of morphology.The density variations may change the deformity type(compression deformity or wedge deformity),which further affects the fracture pattern.Statistical models can identify the morphology and density variations in degenerative vertebrae,and the SSM/SAM modes could be used to assess compressive strength and fracture behavior.The above findings have implications for assisting clinicians in pathological diagnosis,fracture risk assessment,implant design,and preoperative planning.展开更多
Recent years have witnessed increasingly frequent extreme precipitation events,especially in desert steppes in the semi-arid and arid transition zone.Focusing on a desert steppe in western-central Inner Mongolia Auton...Recent years have witnessed increasingly frequent extreme precipitation events,especially in desert steppes in the semi-arid and arid transition zone.Focusing on a desert steppe in western-central Inner Mongolia Autonomous Region,China,this study aimed to determine the principle time-varying pattern of extreme precipitation and its dominant climate forcings during the period 1988-2017.Based on the generalized additive models for location,scale,and shape(GAMLSS)modeling framework,we developed the best time-dependent models for the extreme precipitation series at nine stations,as well as the optimized non-stationary models with large-scale climate indices(including the North Atlantic Oscillation(NAO),Atlantic Multidecadal Oscillation(AMO),Southern Oscillation(SO),Pacific Decadal Oscillation(PDO),Arctic Oscillation(AO),and North Pacific Oscillation(NPO))as covariates.The results indicated that extreme precipitation remained stationary at more than half of the stations(Hailisu,Wuyuan,Dengkou,Hanggin Rear Banner,Urad Front Banner,and Yikewusu),while linear and non-linear time-varying patterns were quantitatively identified at the other stations(Urad Middle Banner,Linhe,and Wuhai).These non-stationary behaviors of extreme precipitation were mainly reflected in the mean value of extreme precipitation.The optimized non-stationary models performed best,indicating the significant influences of large-scale climate indices on extreme precipitation.In particular,the NAO,NPO,SO,and AMO remained as covariates and significantly influenced the variations in the extreme precipitation regime.Our findings have important reference significance for gaining an in-depth understanding of the driving mechanism of the non-stationary behavior of extreme precipitation and enable advanced predictions of rainstorm risks.展开更多
It is difficult to obtain the desired strip shape using Sendzimir rolling mills because small diameter work rolls can be easily deformed by the roiling force. To control the strip shape effectively, it is important to...It is difficult to obtain the desired strip shape using Sendzimir rolling mills because small diameter work rolls can be easily deformed by the roiling force. To control the strip shape effectively, it is important to understand the relationship between the behavior of the shape actuator and the variation of the strip shape. A numerical model based on the contact element method was proposed for the prediction of strip shape. In this numerical model, the re- lationships between the actuating forces, the roll deflections, the thickness profiles of the entry and exit sides, and the strip shape were considered. The proposed numerical model for strip shape prediction was evaluated by computer simulation and experiment with respect to various AS-U roll and first intermediate roll positions.展开更多
Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on th...Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on the flowering stage, using its apparent structure features and colors. Additional phenological stages have been largely overlooked. The objective of this study was to improve a shape-model method(SMM) for extracting winter canola phenological stages from time-series top-of-canopy reflectance images collected by an unmanned aerial vehicle(UAV). The transformation equation of the SMM was refined to account for the multi-peak features of the temporal dynamics of three vegetation indices(VIs)(NDVI, EVI, and CI). An experiment with various seeding scenarios was conducted, including four different seeding dates and three seeding densities. Three mathematical functions: asymmetric Gaussian function(AGF), Fourier function, and double logistic function, were employed to fit timeseries vegetation indices to extract information about phenological stages. The refined SMM effectively estimated the phenological stages of canola, with a minimum root mean square error(RMSE) of 3.7 days for all phenological stages. The AGF function provided the best fitting performance, as it captured multiple peaks in the growth dynamics characteristics for all seeding date scenarios using four scaling parameters. For the three selected VIs, CIred-edgeachieved the greatest accuracy in estimating the phenological stage dates. This study demonstrates the high potential of the refined SMM for estimating winter canola phenology.展开更多
Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest ...Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand, The definition of constraints leads only to marginal or minor decline in the model statistics like AIC An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting. Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the standard GAM but with the additional possibility of defining specific constraints for the model effects. The longitudinal character of the model allows for tree height imputation for the current status of forests but also for future tree height prediction.展开更多
Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E- 2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the...Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E- 2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the mis- sion. In this paper, the modeling method and preliminary model of Asteroid Toutatis are discussed. First, the optical images obtained by Chang'E-2 are analyzed. Terrain and silhouette features in images are described. Then, the modeling method based on previous radar model and preliminary information from optical images is proposed. A preliminary polyhedron model of Asteroid Toutatis is established. Finally, the spherical harmonic coefficients of Asteroid Toutatis based on the polyhedron model are obtained. Some parameters of model are analyzed and compared. Although the model proposed in this paper is only a preliminary model, this work offers a valuable reference for future high-resolution models.展开更多
Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pe...Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norwa are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputatio in forest inventories as well as future tree height predictions in growth and yield scenario simulations. Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand ag as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests. Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are available. Based on the model selection of non-constraint models, shape constraint additive models (scare) were fit tc incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity. Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. / two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatial correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both the level and the slope of the height-diameter curve and both effects are positive. Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited data bases. However, this problem can be regarded not to be specific to our investigation but more general since growth and yield data that are balanced over the whole data range with respect to all combinations of predictor variables are exceptional cases. Hence, scare may provide methodological improvements in several applications by combining the flexibility of additive models with expert knowledge.展开更多
A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming par...A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming parameters, such as the spatial distribution of melt mass flux, spray distance, rotating and translating speeds of substrate bar etc. , on the geometry and dimension of spray formed product were investigated.展开更多
A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement i...A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.展开更多
Surface-based geometric modeling has many advantages in terms of visualization and traditional subtractive manufacturing using computer-numerical-control cutting-machine tools.However,it is not an ideal solution for a...Surface-based geometric modeling has many advantages in terms of visualization and traditional subtractive manufacturing using computer-numerical-control cutting-machine tools.However,it is not an ideal solution for additive manufacturing because to digitally print a surface-represented geometric object using a certain additive manufacturing technology,the object has to be converted into a solid representation.However,converting a known surface-based geometric representation into a printable representation is essentially a redesign process,and this is especially the case,when its interior material structure needs to be considered.To specify a 3D geometric object that is ready to be digitally manufactured,its representation has to be in a certain volumetric form.In this research,we show how some of the difficulties experienced in additive manufacturing can be easily solved by using implicitly represented geometric objects.Like surface-based geometric representation is subtractive manufacturing-friendly,implicitly described geometric objects are additive manufacturing-friendly:implicit shapes are 3D printing ready.The implicit geometric representation allows to combine a geometric shape,material colors,an interior material structure,and other required attributes in one single description as a set of implicit functions,and no conversion is needed.In addition,as implicit objects are typically specified procedurally,very little data is used in their specifications,which makes them particularly useful for design and visualization with modern cloud-based mobile devices,which usually do not have very big storage spaces.Finally,implicit modeling is a design procedure that is parallel computing-friendly,as the design of a complex geometric object can be divided into a set of simple shape-designing tasks,owing to the availability of shape-preserving implicit blending operations.展开更多
The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and t...The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and the control parameters being functions of the stress and the temperature. A two constant model is found to be preferred to a four constant model.展开更多
Research about asteroids has recently attracted more and more attention, especially focusing on their physical structures, such as their spin axis, rotation period and shape. The long distance between observers on Ear...Research about asteroids has recently attracted more and more attention, especially focusing on their physical structures, such as their spin axis, rotation period and shape. The long distance between observers on Earth and asteroids makes it impossible to directly calculate the shape and other parameters of asteroids, with the exception of Near Earth Asteroids and others that have passed by some spacecrafts. Photometric measurements are still generally the main way to obtain research data on asteroids, i.e. the lightcurves recording the brightness and positions of asteroids. Supposing that the shape of the asteroid is a triaxial ellipsoid with a stable spin, a new method is presented in this article to reconstruct the shape models of asteroids from the lightcurves, together with other physical parameters. By applying a special curvature function, the method calculates the brightness integration on a unit sphere and Lebedev quadrature is employed for the discretization. Finally, the method searches for the optimal solution by the Levenberg-Marquardt algorithm to minimize the residual of the brightness. By adopting this method, not only can related physical parameters of asteroids be obtained at a reasonable accuracy, but also a simple shape model of an ellipsoid can be generated for reconstructing a more sophisticated shape model.展开更多
The effectiveness and safety of the mouthguard depend on the sheet material thickness. The thickness of the thermoformed mouthguard is affected by the model undercut and the thermal shrinkage that occurs when the extr...The effectiveness and safety of the mouthguard depend on the sheet material thickness. The thickness of the thermoformed mouthguard is affected by the model undercut and the thermal shrinkage that occurs when the extruded-molded sheet is reheated. The aim of this study was to clarify the influence of the undercut amount of the model and the thickness of the sheet material on the thermal shrinkage of the extruded sheet. The mouthguard sheet used ethylene-vinyl acetate resin with a thickness of 4.0 mm (4M) and 3.0 mm (3M) and was manufactured by extrusion molding. The working models were three hard gypsum models with the undercut amount on the labial side trimmed to 0? (U0), 10? (U10), and 20? (U20). Mouthguard thickness after vacuum formation was compared between the conditions formed so that the extrusion direction was vertical (condition V) or parallel (condition P) to the model midline. Differences in the reduction rate of the mouthguard thicknesses of the labial and buccal side depending on the sheet extrusion direction, model angle, and sheet material thickness were analyzed by three-way ANOVA and Bonferroni method. The reduction rate of the thickness in condition P was significantly greater than in condition V under all conditions except U0-4M on the labial side and U0-4M and U10-4M on the buccal side. In all models, the reduction rate of the thicknesses was significantly greater in 3M than in 4M in the same extrusion direction. In both 4M and 3M, the reduction rate of the thicknesses tended to increase as the amount of undercut increased in each extrusion direction. This study suggested that a model with a large amount of undercut on the labial side or a thin sheet had a significant effect on the thermal shrinkage of the mouthguard sheet during thermoforming, which leads to the thinning of the mouthguard.展开更多
基金Supported by the Centre for Digital Entertainment at Bournemouth University by the UK Engineering and Physical Sciences Research Council(EPSRC)EP/L016540/1 and Humain Ltd.
文摘Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.
文摘Active shape models (ASM), consisting of a shape model and a local gray-level appearance model, can be used to locate the objects in images. In original ASM scheme, the model of object′s gray-level variations is based on the assumption of one-dimensional sampling and searching method. In this work a new way to model the gray-level appearance of the objects is explored, using a two-dimensional sampling and searching technique in a rectangular area around each landmark of object shape. The ASM based on this improvement is compared with the original ASM on an identical medical image set for task of spine localization. Experiments demonstrate that the method produces significantly fast, effective, accurate results for spine localization in medical images.
基金21st Century Education Revitalization Project (No.301703201).
文摘A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.It allows the reconstructed shape to vary more than that reconstructed in the standard ASM shape space,hence it is more expressive in representing shapes in real life.Then a cost function is developed,based on a study on the search process.An optimal searching method using the feedback information provided by the evaluation cost is proposed to improve the performance of ASM alignment.Experimental results show that the proposed OSS can offer the maximum shape variation with reserving the principal information and a unique local optimal shape is acquired after optimal searching.The combination of OSS and optimal searching can improve the ASM performance greatly.
基金funded by the International University,VNU-HCM,under grant number T2023-01-BME.
文摘Skull structures are important for biomechanical head simulations,but they are mostly reconstructed frommedical images.These reconstruction methods harmthe human body and have a long processing time.Currently,skull structures canbe straightforwardly predictedfromthe head,but a fullheadshapemust be available.Most scanning devices can only capture the face shape.Consequently,a method that can quickly predict the full skull structures from the face is necessary.In this study,a novel face-to-skull prediction procedure is introduced.Given a threedimensional(3-D)face shape,a skull mesh could be predicted so that its shape would statistically fit the face shape.Several prediction strategies were conducted.The optimal prediction strategy with its optimal hyperparameters was experimentally selected through a ten-fold cross-validation with 329 subjects.As a result,the face-to-skull prediction strategy based on the relations between face head shape and back head shape,between face head shape and face skull shape,and between back head shape and back skull shape was optimal.The optimal mean mesh-to-mesh distance(mean±SD)between the predicted skull shapes and the ground truth skull shapes was 1.93±0.36 mm,and those between the predicted skull meshes and the ground truth skull meshes were 2.65±0.36 mm.Moreover,the prediction errors in back-skull and muscle attachment regions were 1.7432±0.5217 mm and 1.7671±0.3829 mm,respectively.These errors are within the acceptable range of facial muscle simulation.In perspective,this method will be employed in our clinical decision support system to enhance the accuracy of biomechanical head simulation based on a stereo fusion camera system.Moreover,we will also enhance the accuracy of the face-to-skull prediction by diversifying the dataset intomore varied geographical regions and genders.More types of parameters,such as BodyMass Index(BMI),coupled with head-to-skull thicknesses,will be fused with the proposed face-to-skull procedure.
基金supported by the National Natural Science Foundation of China(Grant No.12272029).
文摘Lumbar degeneration leads to changes in geometry and density distribution of vertebrae,which could further influence the mechanical property and behavior.This study aimed to quantitatively describe the variations in shape and density distribution for degenerated vertebrae by statistical models,and utilized the specific statistical shape model(SSM)/statistical appearance model(SAM)modes to assess compressive strength and fracture behavior.Highly detailed SSM and SAM were developed based on the 75 L1 vertebrae of elderly men,and their variations in shape and density distribution were quantified with principal component(PC)modes.All vertebrae were classified into mild(n=22),moderate(n=29),and severe(n=24)groups according to the overall degree of degeneration.Quantitative computed tomography-based finite element analysis was used to calculate compressive strength for each L1 vertebra,and the associations between compressive strength and PC modes were evaluated by multivariable linear regression(MLR).Moreover,the distributions of equivalent plastic strain(PEEQ)for the vertebrae assigned with the first modes of SSM and SAM at mean±3SD were investigated.The Leave-One-Out analysis showed that our SSM and SAM had good performance,with mean absolute errors of 0.335±0.084 mm and 64.610±26.620 mg/cm3,respectively.A reasonable accuracy of bone strength prediction was achieved by using four PC modes(SSM 1,SAM 1,SAM 4,and SAM 5)to construct the MLR model.Furthermore,the PEEQ values were more sensitive to degeneration-related variations of density distribution than those of morphology.The density variations may change the deformity type(compression deformity or wedge deformity),which further affects the fracture pattern.Statistical models can identify the morphology and density variations in degenerative vertebrae,and the SSM/SAM modes could be used to assess compressive strength and fracture behavior.The above findings have implications for assisting clinicians in pathological diagnosis,fracture risk assessment,implant design,and preoperative planning.
基金funded by the Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station,China Institute of Water Resources and Hydropower Research(YSS202105)the National Natural Science Foundation of China(52269005)+3 种基金the Inner Mongolia Science and Technology Plan Project(2022YFSH0105)the Central Guidance for Local Science and Technology Development Fund Projects(2024ZY0002)the Inner Mongolia Autonomous Region University Youth Science and Technology Talent Project(NJYT 22037)the Inner Mongolia Agricultural University Young Teachers'Scientific Research Ability Improvement Project(BR220104).
文摘Recent years have witnessed increasingly frequent extreme precipitation events,especially in desert steppes in the semi-arid and arid transition zone.Focusing on a desert steppe in western-central Inner Mongolia Autonomous Region,China,this study aimed to determine the principle time-varying pattern of extreme precipitation and its dominant climate forcings during the period 1988-2017.Based on the generalized additive models for location,scale,and shape(GAMLSS)modeling framework,we developed the best time-dependent models for the extreme precipitation series at nine stations,as well as the optimized non-stationary models with large-scale climate indices(including the North Atlantic Oscillation(NAO),Atlantic Multidecadal Oscillation(AMO),Southern Oscillation(SO),Pacific Decadal Oscillation(PDO),Arctic Oscillation(AO),and North Pacific Oscillation(NPO))as covariates.The results indicated that extreme precipitation remained stationary at more than half of the stations(Hailisu,Wuyuan,Dengkou,Hanggin Rear Banner,Urad Front Banner,and Yikewusu),while linear and non-linear time-varying patterns were quantitatively identified at the other stations(Urad Middle Banner,Linhe,and Wuhai).These non-stationary behaviors of extreme precipitation were mainly reflected in the mean value of extreme precipitation.The optimized non-stationary models performed best,indicating the significant influences of large-scale climate indices on extreme precipitation.In particular,the NAO,NPO,SO,and AMO remained as covariates and significantly influenced the variations in the extreme precipitation regime.Our findings have important reference significance for gaining an in-depth understanding of the driving mechanism of the non-stationary behavior of extreme precipitation and enable advanced predictions of rainstorm risks.
基金Item Sponsored by Korea Science and Engineering Foundation(KOSEF)Grant Funded by Korea Government(MEST)(2010-0022521)
文摘It is difficult to obtain the desired strip shape using Sendzimir rolling mills because small diameter work rolls can be easily deformed by the roiling force. To control the strip shape effectively, it is important to understand the relationship between the behavior of the shape actuator and the variation of the strip shape. A numerical model based on the contact element method was proposed for the prediction of strip shape. In this numerical model, the re- lationships between the actuating forces, the roll deflections, the thickness profiles of the entry and exit sides, and the strip shape were considered. The proposed numerical model for strip shape prediction was evaluated by computer simulation and experiment with respect to various AS-U roll and first intermediate roll positions.
基金supported by the National Natural Science Foundation of China (51909228)the Postdoctoral Science Foundation of China (2020M671623)the ‘‘Blue Project” of Yangzhou University。
文摘Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on the flowering stage, using its apparent structure features and colors. Additional phenological stages have been largely overlooked. The objective of this study was to improve a shape-model method(SMM) for extracting winter canola phenological stages from time-series top-of-canopy reflectance images collected by an unmanned aerial vehicle(UAV). The transformation equation of the SMM was refined to account for the multi-peak features of the temporal dynamics of three vegetation indices(VIs)(NDVI, EVI, and CI). An experiment with various seeding scenarios was conducted, including four different seeding dates and three seeding densities. Three mathematical functions: asymmetric Gaussian function(AGF), Fourier function, and double logistic function, were employed to fit timeseries vegetation indices to extract information about phenological stages. The refined SMM effectively estimated the phenological stages of canola, with a minimum root mean square error(RMSE) of 3.7 days for all phenological stages. The AGF function provided the best fitting performance, as it captured multiple peaks in the growth dynamics characteristics for all seeding date scenarios using four scaling parameters. For the three selected VIs, CIred-edgeachieved the greatest accuracy in estimating the phenological stage dates. This study demonstrates the high potential of the refined SMM for estimating winter canola phenology.
文摘Background: Measurements of tree heights and diameters are essential in forest assessment and modelling. Tree heights are used for estimating timber volume, site index and other important variables related to forest growth and yield, succession and carbon budget models. However, the diameter at breast height (dbh) can be more accurately obtained and at lower cost, than total tree height. Hence, generalized height-diameter (h-d) models that predict tree height from dbh, age and other covariates are needed. For a more flexible but biologically plausible estimation of covariate effects we use shape constrained generalized additive models as an extension of existing h-d model approaches. We use causal site parameters such as index of aridity to enhance the generality and causality of the models and to enable predictions under projected changeable climatic conditions. Methods: We develop unconstrained generalized additive models (GAM) and shape constrained generalized additive models (SCAM) for investigating the possible effects of tree-specific parameters such as tree age, relative diameter at breast height, and site-specific parameters such as index of aridity and sum of daily mean temperature during vegetation period, on the h-d relationship of forests in Lower Saxony, Germany. Results: Some of the derived effects, e.g. effects of age, index of aridity and sum of daily mean temperature have significantly non-linear pattern. The need for using SCAM results from the fact that some of the model effects show partially implausible patterns especially at the boundaries of data ranges. The derived model predicts monotonically increasing levels of tree height with increasing age and temperature sum and decreasing aridity and social rank of a tree within a stand, The definition of constraints leads only to marginal or minor decline in the model statistics like AIC An observed structured spatial trend in tree height is modelled via 2-dimensional surface fitting. Conclusions: We demonstrate that the SCAM approach allows optimal regression modelling flexibility similar to the standard GAM but with the additional possibility of defining specific constraints for the model effects. The longitudinal character of the model allows for tree height imputation for the current status of forests but also for future tree height prediction.
基金supported by the National Basic Research Program of China("973" Program)(2012CB720000)the National Natural Science Foundation of China(11102020)the Program for New Century Excellent Talents in University and Beijing Higher Education Young Elite Teacher Project
文摘Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E- 2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the mis- sion. In this paper, the modeling method and preliminary model of Asteroid Toutatis are discussed. First, the optical images obtained by Chang'E-2 are analyzed. Terrain and silhouette features in images are described. Then, the modeling method based on previous radar model and preliminary information from optical images is proposed. A preliminary polyhedron model of Asteroid Toutatis is established. Finally, the spherical harmonic coefficients of Asteroid Toutatis based on the polyhedron model are obtained. Some parameters of model are analyzed and compared. Although the model proposed in this paper is only a preliminary model, this work offers a valuable reference for future high-resolution models.
基金supported by the Norwegian Institute of Bioeconomy Research(NIBIO)
文摘Background: Generalized height-diameter curves based on a re-parameterized version of the Korf function for Norway spruce (Piceo abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) in Norwa are presented. The Norwegian National Forest Inventory (NFI) is used as data base for estimating the model parameters. The derived models are developed to enable spatially explicit and site sensitive tree height imputatio in forest inventories as well as future tree height predictions in growth and yield scenario simulations. Methods: Generalized additive mixed models (gamm) are employed to detect and quantify potentially non-linear effects of predictor variables. In doing so the quadratic mean diameter serves as longitudinal covariate since stand ag as measured in the NFI, shows only a weak correlation with a stands developmental status in Norwegian forests. Additionally the models can be locally calibrated by predicting random effects if measured height-diameter pairs are available. Based on the model selection of non-constraint models, shape constraint additive models (scare) were fit tc incorporate expert knowledge and intrinsic relationships by enforcing certain effect patterns like monotonicity. Results: Model comparisons demonstrate that the shape constraints lead to only marginal differences in statistical characteristics but ensure reasonable model predictions. Under constant constraints the developed models predict increasing tree heights with decreasing altitude, increasing soil depth and increasing competition pressure of a tree. / two-dimensional spatially structured effect of UTM-coordinates accounts for the potential effects of large scale spatial correlated covariates, which were not at our disposal. The main result of modelling the spatially structured effect is lower tree height prediction for coastal sites and with increasing latitude. The quadratic mean diameter affects both the level and the slope of the height-diameter curve and both effects are positive. Conclusions: In this investigation it is assumed that model effects in additive modelling of height-diameter curves which are unfeasible and too wiggly from an expert point of view are a result of quantitatively or qualitatively limited data bases. However, this problem can be regarded not to be specific to our investigation but more general since growth and yield data that are balanced over the whole data range with respect to all combinations of predictor variables are exceptional cases. Hence, scare may provide methodological improvements in several applications by combining the flexibility of additive models with expert knowledge.
文摘A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming parameters, such as the spatial distribution of melt mass flux, spray distance, rotating and translating speeds of substrate bar etc. , on the geometry and dimension of spray formed product were investigated.
基金supported by the Fulbright Colombia-Colciencias Scholarship and Universidad Militar Nueva Granada
文摘A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.
基金supported by the National Natural Science Foundation of China(Grant No.61502402 and 61379080)the Natural Science Foundation of Fujian Province of China(Grant No.2015J05129).
文摘Surface-based geometric modeling has many advantages in terms of visualization and traditional subtractive manufacturing using computer-numerical-control cutting-machine tools.However,it is not an ideal solution for additive manufacturing because to digitally print a surface-represented geometric object using a certain additive manufacturing technology,the object has to be converted into a solid representation.However,converting a known surface-based geometric representation into a printable representation is essentially a redesign process,and this is especially the case,when its interior material structure needs to be considered.To specify a 3D geometric object that is ready to be digitally manufactured,its representation has to be in a certain volumetric form.In this research,we show how some of the difficulties experienced in additive manufacturing can be easily solved by using implicitly represented geometric objects.Like surface-based geometric representation is subtractive manufacturing-friendly,implicitly described geometric objects are additive manufacturing-friendly:implicit shapes are 3D printing ready.The implicit geometric representation allows to combine a geometric shape,material colors,an interior material structure,and other required attributes in one single description as a set of implicit functions,and no conversion is needed.In addition,as implicit objects are typically specified procedurally,very little data is used in their specifications,which makes them particularly useful for design and visualization with modern cloud-based mobile devices,which usually do not have very big storage spaces.Finally,implicit modeling is a design procedure that is parallel computing-friendly,as the design of a complex geometric object can be divided into a set of simple shape-designing tasks,owing to the availability of shape-preserving implicit blending operations.
文摘The measurements by Huibin XU et al of the stress-dependence ot hysteresis in a NiTi shape memo ry alloy are modeled by catastrophe theory. The cusp catastrophe is used with the strain as the behaviour variable and the control parameters being functions of the stress and the temperature. A two constant model is found to be preferred to a four constant model.
基金funded by grant No. 019/2010/A2 from the Science and Technology Development Fund, MSARthe support of the National Natural Science Foundation of China (Grant Nos. 10503013, 11078006 and 10933004)the Minor Planet Foundation of Purple Mountain Observatory
文摘Research about asteroids has recently attracted more and more attention, especially focusing on their physical structures, such as their spin axis, rotation period and shape. The long distance between observers on Earth and asteroids makes it impossible to directly calculate the shape and other parameters of asteroids, with the exception of Near Earth Asteroids and others that have passed by some spacecrafts. Photometric measurements are still generally the main way to obtain research data on asteroids, i.e. the lightcurves recording the brightness and positions of asteroids. Supposing that the shape of the asteroid is a triaxial ellipsoid with a stable spin, a new method is presented in this article to reconstruct the shape models of asteroids from the lightcurves, together with other physical parameters. By applying a special curvature function, the method calculates the brightness integration on a unit sphere and Lebedev quadrature is employed for the discretization. Finally, the method searches for the optimal solution by the Levenberg-Marquardt algorithm to minimize the residual of the brightness. By adopting this method, not only can related physical parameters of asteroids be obtained at a reasonable accuracy, but also a simple shape model of an ellipsoid can be generated for reconstructing a more sophisticated shape model.
文摘The effectiveness and safety of the mouthguard depend on the sheet material thickness. The thickness of the thermoformed mouthguard is affected by the model undercut and the thermal shrinkage that occurs when the extruded-molded sheet is reheated. The aim of this study was to clarify the influence of the undercut amount of the model and the thickness of the sheet material on the thermal shrinkage of the extruded sheet. The mouthguard sheet used ethylene-vinyl acetate resin with a thickness of 4.0 mm (4M) and 3.0 mm (3M) and was manufactured by extrusion molding. The working models were three hard gypsum models with the undercut amount on the labial side trimmed to 0? (U0), 10? (U10), and 20? (U20). Mouthguard thickness after vacuum formation was compared between the conditions formed so that the extrusion direction was vertical (condition V) or parallel (condition P) to the model midline. Differences in the reduction rate of the mouthguard thicknesses of the labial and buccal side depending on the sheet extrusion direction, model angle, and sheet material thickness were analyzed by three-way ANOVA and Bonferroni method. The reduction rate of the thickness in condition P was significantly greater than in condition V under all conditions except U0-4M on the labial side and U0-4M and U10-4M on the buccal side. In all models, the reduction rate of the thicknesses was significantly greater in 3M than in 4M in the same extrusion direction. In both 4M and 3M, the reduction rate of the thicknesses tended to increase as the amount of undercut increased in each extrusion direction. This study suggested that a model with a large amount of undercut on the labial side or a thin sheet had a significant effect on the thermal shrinkage of the mouthguard sheet during thermoforming, which leads to the thinning of the mouthguard.