Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccu...Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.展开更多
In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is base...In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.展开更多
This work is to develop a blending-based multiple model adaptive explicit predictive control scheme for nonlinear MiMo systems that can handle parametric uncertainties.Here,for each identification model,an explicit no...This work is to develop a blending-based multiple model adaptive explicit predictive control scheme for nonlinear MiMo systems that can handle parametric uncertainties.Here,for each identification model,an explicit nonlinear model predictive control(ENMPC)law is computed in advance for the corresponding model.The generated control inputs from the set of ENMPC controllers are being blended online using a weighting vector that is continuously updated by the proposed adaptive identification schemes.The proposed control scheme is used to govern the tracking of a highly nonlinear helicopter model known as the twin rotor MIMO system(TRMS).Here,an extended Kalman filter(EKF)is used to estimate the unavailable states of the TRMS.Finally,simulation and experimental results are presented to prove that the proposed controller gives better performance than some reported works in the literature.The effectiveness of the proposed controller is demonstrated by experimental studies of the TRMS model.展开更多
Due to varying characteristics of the wind condition, the performance of the wind turbines can be optimized by adapting the parameters of the control system. In this letter, an adaptive technique is proposed for the n...Due to varying characteristics of the wind condition, the performance of the wind turbines can be optimized by adapting the parameters of the control system. In this letter, an adaptive technique is proposed for the novel model predictive control(MPC) for the yaw system of the wind turbines. The control horizon is adapted to the one with the best predictive performance among multiple control horizons. The adaptive MPC is demonstrated by simulations using real wind data, and its performance is compared with the baseline MPC at fixed control horizon. Results show that the adaptive MPC provides better comprehensive performance than the baseline ones at different preview time of wind directions. Therefore, the proposed adaptive technique is potentially useful for the wind turbines in the future.展开更多
基金supported by the National Key Research and the Development Program of China(2022YFC3803700)the National Natural Science Foundation of China(52202391 and U20A20155).
文摘Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.
基金Supported by National Natural Science Foundation of China(61873006,61673053)National Key Research and Development Project(2018YFC1602704,2018YFB1702704)。
文摘In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness.
文摘This work is to develop a blending-based multiple model adaptive explicit predictive control scheme for nonlinear MiMo systems that can handle parametric uncertainties.Here,for each identification model,an explicit nonlinear model predictive control(ENMPC)law is computed in advance for the corresponding model.The generated control inputs from the set of ENMPC controllers are being blended online using a weighting vector that is continuously updated by the proposed adaptive identification schemes.The proposed control scheme is used to govern the tracking of a highly nonlinear helicopter model known as the twin rotor MIMO system(TRMS).Here,an extended Kalman filter(EKF)is used to estimate the unavailable states of the TRMS.Finally,simulation and experimental results are presented to prove that the proposed controller gives better performance than some reported works in the literature.The effectiveness of the proposed controller is demonstrated by experimental studies of the TRMS model.
基金supported by the National Natural Science Foundation of China (No. 61803393)the Natural Science Foundation of Hunan Province (No.2020JJ4751)+1 种基金the Innovation-Driven Project of Central South University (No.2020CX031)the Basic Science Research Program of Korea (No. NRF-2016R1A6A1A03013567)。
文摘Due to varying characteristics of the wind condition, the performance of the wind turbines can be optimized by adapting the parameters of the control system. In this letter, an adaptive technique is proposed for the novel model predictive control(MPC) for the yaw system of the wind turbines. The control horizon is adapted to the one with the best predictive performance among multiple control horizons. The adaptive MPC is demonstrated by simulations using real wind data, and its performance is compared with the baseline MPC at fixed control horizon. Results show that the adaptive MPC provides better comprehensive performance than the baseline ones at different preview time of wind directions. Therefore, the proposed adaptive technique is potentially useful for the wind turbines in the future.