On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engin...On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engine structures, some of the key parts of the engine were analyzed with refined mesh by sub model method and the error of the FEM solution was estimated by the extrapolation method. The example showed that the sub model can not only analyze the comlex structures without the restriction of the software and hardware of the computers, but get the more precise analysis result also. This method is more suitable for the strength analysis of the complex assembly structure.展开更多
This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects...This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.展开更多
This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacem...This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacement is presented as a basic theory for the general formulation of the equations of motion, and thus abandoned the kinematic assumption and the instantaneous structure assumption which arc used in the Spline Model Method. In thc same time, the nonlinear terms sue as coupling terms between thc rigid body motion and elastic deformation arc included. New member’s spline models are established. Mass matrix, Coriolis mass matrix, normal and tangential mass matrix, linear stiffness matrix, nonlinear stiffness matrix and rotation matrix arc derived. The kinematic differential equations of a member and system are deduced in the end. The Newmark direct integration method is used as the solution scheme of the kinematic differential equations to get the periodic response.展开更多
Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the inju...Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the injury and pathophysiological mechanisms underlying PCAS remain unclear.Experimental animal models are valuable tools for exploring the etiology,pathogenesis,and potential interventions for CA and PCAS.Current CA animal models include electrical induction of ventricular fibrillation(VF),myocardial infarction,high potassium,asphyxia,and hemorrhagic shock.Although these models do not fully replicate the complexity of clinical CA,the mechanistic insights they provide remain highly relevant,including post-CA brain injury(PCABI),post-CA myocardial dysfunction(PAMD),systemic ischaemia/reperfusion injury(IRI),and the persistent precipitating pathology.Summarizing the methods of establishing CA models,the challenges encountered in the modeling process,and the mechanisms of PCAS can provide a foundation for developing standardized CA modeling protocols.展开更多
An optical emission spectroscopy(OES)method with a non-invasive measurement capability,without inducing disturbance to the discharge,represents an effective method for material monitoring.However,when the OES method i...An optical emission spectroscopy(OES)method with a non-invasive measurement capability,without inducing disturbance to the discharge,represents an effective method for material monitoring.However,when the OES method is employed to monitor the trace erosion product within the ceramic channel of a Hall thruster,it becomes challenging to distinguish between signal and noise.In this study,we propose a model filtering method based on the signal characteristics of the Hall thruster plume spectrometer.This method integrates the slit imaging and spectral resolution features of the spectrometer.Employing this method,we extract the spectral signals of the erosion product and working gas from the Hall thruster under different operating conditions.The results indicate that our new method performs comparably to the traditional method without model filtering when extracting atom signals from strong xenon working gas.However,for trace amounts of the erosion product,our approach significantly enhances the signal-to-noise ratio(SNR),enabling the identification of extremely weak spectral signals even under low mass flow rate and low-voltage conditions.We obtain boron atom concentration of 3.91×10^(-3) kg/m^(3) at a mass flow rate of 4×10^(-7) kg/s and voltage of 200 V while monitoring a wider range of thruster operating conditions.The new method proposed in this study is suitable for monitoring other low-concentration elements,making it valuable for materials processing,environmental monitoring and space propulsion applications.展开更多
This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations...This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations and can lead to varied or similar results in terms of precision and performance under certain assumptions. The article underlines the importance of comparing these two approaches to choose the one best suited to the context, available data and modeling objectives.展开更多
This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that...This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.展开更多
To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un...To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.展开更多
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode...Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.展开更多
Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of Europ...Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.展开更多
The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. ...The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability.展开更多
In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support ve...In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support vector regression (MRR-LSSVR) machine is proposed. Firstly, the PS algorithm is designed to choose the most reasonable inputs of the adaptive module. During this process, a wrapper criterion based on least square support vector regression (LSSVR) machine is adopted, which can not only reduce computational complexity but also enhance generalization performance. Secondly, with the input variables determined by the PS algorithm, a mapping model of engine parameter estimation is trained off-line using MRR-LSSVR, which has a satisfying accuracy within 5&. Finally, based on a numerical simulation platform of an integrated helicopter/ turbo-shaft engine system, an adaptive turbo-shaft engine model is developed and tested in a certain flight envelope. Under the condition of single or multiple engine components being degraded, many simulation experiments are carried out, and the simulation results show the effectiveness and validity of the proposed adaptive modeling method.展开更多
CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energ...CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energy behaviors in CNC machining systems. A method to model flexible energy behaviors in CNC machining systems based on hierarchical objected-oriented Petri net(HOONet) is proposed. The structure of the HOONet is constructed of a high-level model and detail models. The former is used to model operational states for CNC machining systems, and the latter is used to analyze the component models for operational states. The machining parameters having great impacts on energy behaviors in CNC machining systems are declared with the data dictionary in HOONet models. A case study based on a CNC lathe is presented to demonstrate the proposed modeling method. The results show that it is effective for modeling flexible energy behaviors and providing a fine-grained description to quantitatively analyze the energy consumption of CNC machining systems.展开更多
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa...3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.展开更多
The most reliable archive of atmospheric CO_(2) information comprises ice core records spanning the last 800 ka(thousand years ago).The connection between temperature and greenhouse gases,as deduced from ice core reco...The most reliable archive of atmospheric CO_(2) information comprises ice core records spanning the last 800 ka(thousand years ago).The connection between temperature and greenhouse gases,as deduced from ice core records,may help better simulate CO_(2) variations.This research aimed to explore the model methods to precisely predict the atmospheric CO_(2) concentrations and fill the CO_(2) data gaps with CH4 concentration and temperature proxies(δD andδ18O)from Antarctica ice cores,employing Artificial Neural Network(ANN)and Wavelet Transform(WT)techniques.This study was divided into three sections to examine various timescales and resolutions.First,coarse-resolution CO_(2) records from the Vostok and EPICA Dronning Maud Land cores from 70–120 ka were used.Second,the models were applied to the Dome Fuji core for 9–120 ka.Finally,a high-resolution West Antarctic Ice Sheet(WAIS)Divide ice core record,focusing on the 9–70 ka,was employed.The results showed that between 70–120 ka,the hybrid method surpasses the traditional ANN approach.The hybrid method maintained superior performance in the last phase by utilizing high-resolution WAIS record.The results indicated improved accuracy(r=0.98),reinforcing the notion that hybrid methods yield better outcomes than those relying solely on AI methods.展开更多
Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the meta...Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.展开更多
A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic c...A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.展开更多
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model...In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.展开更多
文摘On the basis of introducing the fundamental theory and the basic analysis steps of the sub model method, the strength of the new engine complex assembly structure was analyzed according to the properties of the engine structures, some of the key parts of the engine were analyzed with refined mesh by sub model method and the error of the FEM solution was estimated by the extrapolation method. The example showed that the sub model can not only analyze the comlex structures without the restriction of the software and hardware of the computers, but get the more precise analysis result also. This method is more suitable for the strength analysis of the complex assembly structure.
基金National Natural Science Foundation of China under Grant Nos.51179093 and 91215301Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032
文摘This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.
文摘This paper relates to the deep research on the Splinc Model Method of KED analysis. With the use of cubic B-splinc function as a link’s transverse deflection interpolation function, the principle of virtual displacement is presented as a basic theory for the general formulation of the equations of motion, and thus abandoned the kinematic assumption and the instantaneous structure assumption which arc used in the Spline Model Method. In thc same time, the nonlinear terms sue as coupling terms between thc rigid body motion and elastic deformation arc included. New member’s spline models are established. Mass matrix, Coriolis mass matrix, normal and tangential mass matrix, linear stiffness matrix, nonlinear stiffness matrix and rotation matrix arc derived. The kinematic differential equations of a member and system are deduced in the end. The Newmark direct integration method is used as the solution scheme of the kinematic differential equations to get the periodic response.
基金supported by the National Key Research and Development Program(2021YFC3002205)the Postgraduate Research and Innovation Program of Tianjin Municipal Education Commission(2022BKY113),China.
文摘Cardiac arrest(CA)is a critical condition in the field of cardiovascular medicine.Despite successful resuscitation,patients continue to have a high mortality rate,largely due to post CA syndrome(PCAS).However,the injury and pathophysiological mechanisms underlying PCAS remain unclear.Experimental animal models are valuable tools for exploring the etiology,pathogenesis,and potential interventions for CA and PCAS.Current CA animal models include electrical induction of ventricular fibrillation(VF),myocardial infarction,high potassium,asphyxia,and hemorrhagic shock.Although these models do not fully replicate the complexity of clinical CA,the mechanistic insights they provide remain highly relevant,including post-CA brain injury(PCABI),post-CA myocardial dysfunction(PAMD),systemic ischaemia/reperfusion injury(IRI),and the persistent precipitating pathology.Summarizing the methods of establishing CA models,the challenges encountered in the modeling process,and the mechanisms of PCAS can provide a foundation for developing standardized CA modeling protocols.
基金financially supported by National Natural Science Foundation of China(No.U22B2094)。
文摘An optical emission spectroscopy(OES)method with a non-invasive measurement capability,without inducing disturbance to the discharge,represents an effective method for material monitoring.However,when the OES method is employed to monitor the trace erosion product within the ceramic channel of a Hall thruster,it becomes challenging to distinguish between signal and noise.In this study,we propose a model filtering method based on the signal characteristics of the Hall thruster plume spectrometer.This method integrates the slit imaging and spectral resolution features of the spectrometer.Employing this method,we extract the spectral signals of the erosion product and working gas from the Hall thruster under different operating conditions.The results indicate that our new method performs comparably to the traditional method without model filtering when extracting atom signals from strong xenon working gas.However,for trace amounts of the erosion product,our approach significantly enhances the signal-to-noise ratio(SNR),enabling the identification of extremely weak spectral signals even under low mass flow rate and low-voltage conditions.We obtain boron atom concentration of 3.91×10^(-3) kg/m^(3) at a mass flow rate of 4×10^(-7) kg/s and voltage of 200 V while monitoring a wider range of thruster operating conditions.The new method proposed in this study is suitable for monitoring other low-concentration elements,making it valuable for materials processing,environmental monitoring and space propulsion applications.
文摘This article explores the comparison between the probability method and the least squares method in the design of linear predictive models. It points out that these two approaches have distinct theoretical foundations and can lead to varied or similar results in terms of precision and performance under certain assumptions. The article underlines the importance of comparing these two approaches to choose the one best suited to the context, available data and modeling objectives.
文摘This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2023YJS053)the National Natural Science Foundation of China(Grant No.52278386).
文摘To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.
文摘Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance.
文摘Black-Scholes Model (B-SM) simulates the dynamics of financial market and contains instruments such as options and puts which are major indices requiring solution. B-SM is known to estimate the correct prices of European Stock options and establish the theoretical foundation for Option pricing. Therefore, this paper evaluates the Black-Schole model in simulating the European call in a cash flow in the dependent drift and focuses on obtaining analytic and then approximate solution for the model. The work also examines Fokker Planck Equation (FPE) and extracts the link between FPE and B-SM for non equilibrium systems. The B-SM is then solved via the Elzaki transform method (ETM). The computational procedures were obtained using MAPLE 18 with the solution provided in the form of convergent series.
基金Sponsored by National Science and Technology Support Plan of China (2009AA04Z143)Science and Technology Support Plan of Hebei Province of China (10212101D)Important Natural Science Foundation of Hebei Province of China (E2006001038)
文摘The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability.
基金co-supported by Aeronautical Science Foundation of China (No. 2010ZB52011)Funding of Jiangsu Innovation Program for Graduate Education (No.CXLX11_0213)
文摘In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support vector regression (MRR-LSSVR) machine is proposed. Firstly, the PS algorithm is designed to choose the most reasonable inputs of the adaptive module. During this process, a wrapper criterion based on least square support vector regression (LSSVR) machine is adopted, which can not only reduce computational complexity but also enhance generalization performance. Secondly, with the input variables determined by the PS algorithm, a mapping model of engine parameter estimation is trained off-line using MRR-LSSVR, which has a satisfying accuracy within 5&. Finally, based on a numerical simulation platform of an integrated helicopter/ turbo-shaft engine system, an adaptive turbo-shaft engine model is developed and tested in a certain flight envelope. Under the condition of single or multiple engine components being degraded, many simulation experiments are carried out, and the simulation results show the effectiveness and validity of the proposed adaptive modeling method.
基金Supported by National Natural Science Foundation of China(Grant No.51605058)Chongqing Research Program of Basic Research and Frontier Technology of China(Grant No.cstc2015jcyjBX0088)+2 种基金Fundamental Research Funds for the Central Universities of China(Grant No.106112016CDJCR021226)Six Talent Peaks Project in Jiangsu Province of China(Grant No.2014-ZBZZ-006)"Excellence Plans-Zijin Star" Foundation of Nanjing University of Science and Technology,China(Grant No.2015-zijin-07)
文摘CNC machining systems are inevitably confronted with frequent changes in energy behaviors because they are widely used to perform various machining tasks. It is a challenge to understand and analyze the flexible energy behaviors in CNC machining systems. A method to model flexible energy behaviors in CNC machining systems based on hierarchical objected-oriented Petri net(HOONet) is proposed. The structure of the HOONet is constructed of a high-level model and detail models. The former is used to model operational states for CNC machining systems, and the latter is used to analyze the component models for operational states. The machining parameters having great impacts on energy behaviors in CNC machining systems are declared with the data dictionary in HOONet models. A case study based on a CNC lathe is presented to demonstrate the proposed modeling method. The results show that it is effective for modeling flexible energy behaviors and providing a fine-grained description to quantitatively analyze the energy consumption of CNC machining systems.
文摘3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.
基金supported by the Brain Pool Program through the National Research Foundation of Korea(NRF)and funded by the Ministry of Science and ICT[Grant numbers:2020H1D3A1A04081353,2020M1A5A1110607,2018R1A5A1024958,and RS-2023-00291696].
文摘The most reliable archive of atmospheric CO_(2) information comprises ice core records spanning the last 800 ka(thousand years ago).The connection between temperature and greenhouse gases,as deduced from ice core records,may help better simulate CO_(2) variations.This research aimed to explore the model methods to precisely predict the atmospheric CO_(2) concentrations and fill the CO_(2) data gaps with CH4 concentration and temperature proxies(δD andδ18O)from Antarctica ice cores,employing Artificial Neural Network(ANN)and Wavelet Transform(WT)techniques.This study was divided into three sections to examine various timescales and resolutions.First,coarse-resolution CO_(2) records from the Vostok and EPICA Dronning Maud Land cores from 70–120 ka were used.Second,the models were applied to the Dome Fuji core for 9–120 ka.Finally,a high-resolution West Antarctic Ice Sheet(WAIS)Divide ice core record,focusing on the 9–70 ka,was employed.The results showed that between 70–120 ka,the hybrid method surpasses the traditional ANN approach.The hybrid method maintained superior performance in the last phase by utilizing high-resolution WAIS record.The results indicated improved accuracy(r=0.98),reinforcing the notion that hybrid methods yield better outcomes than those relying solely on AI methods.
基金supported jointly by the National Basic Research Program of China("973"Program)(No2014CB046200)the National Science Foundation of Jiangsu Province(No.BK2014059)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11172135)
文摘Two modeling methods of the root insert for wind turbine blade are presented,i.e.,the local mesh optimization method(LMOM)and the global modeling method(GMM).Based on the optimized mesh of the local model for the metal contact interface,LMOM is proposed to analyze the load path and stress distribution characteristics,while GMM is used to calculate and analyze the stress distribution characteristics of the resin layer established between the bushing and composite layers of root insert.To validate the GMM,a tension test is carried out.The result successfully shows that the shear strain expresses a similar strain distribution tendency with the GMM′s results.
文摘A numerical method was used in order to establish the constitutive relationship of sands under different stress paths, Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90% on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.
文摘In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.