期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
Approach for wideband direction-of-arrival estimation in the presence of array model errors 被引量:3
1
作者 Chen Deli Zhang Cong Tao Huamin Lu Huanzhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第1期69-75,共7页
The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A c... The presence of array imperfection and mutual coupling in sensor arrays poses several challenges for development of effective algorithms for the direction-of-arrival (DOA) estimation problem in array processing. A correlation domain wideband DOA estimation algorithm without array calibration is proposed, to deal with these array model errors, using the arbitrary antenna array of omnidirectional elements. By using the matrix operators that have the memory and oblivion characteristics, this algorithm can separate the incident signals effectively. Compared with other typical wideband DOA estimation algorithms based on the subspace theory, this algorithm can get robust DOA estimation with regard to position error, gain-phase error, and mutual coupling, by utilizing a relaxation technique based on signal separation. The signal separation category and the robustness of this algorithm to the array model errors are analyzed and proved. The validity and robustness of this algorithm, in the presence of array model errors, are confirmed by theoretical analysis and simulation results. 展开更多
关键词 DIRECTION-OF-ARRIVAL array model errors wideband.
在线阅读 下载PDF
Application of Backward Nonlinear Local Lyapunov Exponent Method to Assessing the Relative Impacts of Initial Condition and Model Errors on Local Backward Predictability
2
作者 Xuan LI Jie FENG +1 位作者 Ruiqiang DING Jianping LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第9期1486-1496,共11页
Initial condition and model errors both contribute to the loss of atmospheric predictability.However,it remains debatable which type of error has the larger impact on the prediction lead time of specific states.In thi... Initial condition and model errors both contribute to the loss of atmospheric predictability.However,it remains debatable which type of error has the larger impact on the prediction lead time of specific states.In this study,we perform a theoretical study to investigate the relative effects of initial condition and model errors on local prediction lead time of given states in the Lorenz model.Using the backward nonlinear local Lyapunov exponent method,the prediction lead time,also called local backward predictability limit(LBPL),of given states induced by the two types of errors can be quantitatively estimated.Results show that the structure of the Lorenz attractor leads to a layered distribution of LBPLs of states.On an individual circular orbit,the LBPLs are roughly the same,whereas they are different on different orbits.The spatial distributions of LBPLs show that the relative effects of initial condition and model errors on local backward predictability depend on the locations of given states on the dynamical trajectory and the error magnitudes.When the error magnitude is fixed,the differences between the LBPLs vary with the locations of given states.The larger differences are mainly located on the inner trajectories of regimes.When the error magnitudes are different,the dissimilarities in LBPLs are diverse for the same given state. 展开更多
关键词 Initial condition model errors error magnitude error location LBPL
在线阅读 下载PDF
Impact of the Sequential Bias Correction Scheme on the CMA-MESO Numerical Weather Prediction Model
3
作者 Yuxiao CHEN Liwen WANG +7 位作者 Daosheng XU Jeremy Cheuk-Hin LEUNG Yanan MA Shaojing ZHANG Jing CHEN Yi YANG Wenshou TIAN Banglin ZHANG 《Advances in Atmospheric Sciences》 2025年第8期1580-1596,共17页
Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was... Systematic bias is a type of model error that can affect the accuracy of data assimilation and forecasting that must be addressed.An online bias correction scheme called the sequential bias correction scheme(SBCS),was developed using the6 h average bias to correct the systematic bias during model integration.The primary purpose of this study is to investigate the impact of the SBCS in the high-resolution China Meteorological Administration Meso-scale(CMA-MESO)numerical weather prediction(NWP)model to reduce the systematic bias and to improve the data assimilation and forecast results through this method.The SBCS is improved upon and applied to the CMA-MESO 3-km model in this study.Four-week sequential data assimilation and forecast experiments,driven by rapid update and cycling(RUC),were conducted for the period from 2–29 May 2022.In terms of the characteristics of systematic bias,both the background and analysis show diurnal bias,and these large biases are affected by complex underlying surfaces(e.g.,oceans,coasts,and mountains).After the application of the SBCS,the results of the data assimilation show that the SBCS can reduce the systematic bias of the background and yield a neutral to slightly positive result for the analysis fields.In addition,the SBCS can reduce forecast errors and improve forecast results,especially for surface variables.The above results indicate that this scheme has good prospects for high-resolution regional NWP models. 展开更多
关键词 numerical weather prediction model error systematic bias bias correction SBCS
在线阅读 下载PDF
Spatial Modeling of COVID-19 Occurrence and Vaccination Rate across Counties in Ohio State from Jan. 2020 to April 2023
4
作者 Olawale Oluwafemi Oluwaseun Ibukun +3 位作者 Yaw Kwarteng Kehinde Adebowale Yahaya Danjuma Samson Mela 《Journal of Geographic Information System》 2025年第1期80-96,共17页
The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination ... The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area. 展开更多
关键词 COVID-19 Prevalence COVID-19 Vaccination OHIO Spatial Lag model Spatial Error model
在线阅读 下载PDF
Non-negative least squares variance component estimation of mixed additive and multiplicative random error model
5
作者 Hao Xiao Leyang Wang 《Geodesy and Geodynamics》 2025年第5期617-623,共7页
In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance c... In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance components.However,there is still no related research in the mixed additive and multiplicative random error model(MAMREM).Based on the MAMREM,this paper applies the nonnegative least squares variance component estimation(NNLS-VCE)algorithm to this model.The correlation formula and iterative algorithm of NNLS-VCE for MAMREM are derived.The problem of negative variance in VCE for MAMREM is solved.This paper uses the digital simulation example and the Digital Terrain Mode(DTM)to prove the proposed algorithm's validity.The experimental results demonstrated that the proposed algorithm can effectively correct the VCE in MAMREM when there is a negative VCE. 展开更多
关键词 Mixed additive and multiplicative random error model Stochastic model Non-negative least squares variance component estimation
原文传递
Virtual Reality-based Teleoperation with Robustness Against Modeling Errors 被引量:3
6
作者 蒋再男 刘宏 +1 位作者 王捷 黄剑斌 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期325-333,共9页
This article investigates virtual reality (VR)-based teleoperation with robustness against modeling errors. VR technology is an effective way to overcome the large time delay during space robot teleoperation. However,... This article investigates virtual reality (VR)-based teleoperation with robustness against modeling errors. VR technology is an effective way to overcome the large time delay during space robot teleoperation. However, it depends highly on the accuracy of model. Model errors between the virtual and real environment exist inevitably. The existing way to deal with the problem is by means of either model matching or robot compliance control. As distinct from the existing methods, this article tries to combine m... 展开更多
关键词 space robot TELEOPERATION virtual reality model error visual recognition compliance control
原文传递
BDS satellite clock offset prediction based on a semiparametric adjustment model considering model errors 被引量:8
7
作者 Xiong Yan Wentao Li +1 位作者 Yufeng Yang Xiong Pan 《Satellite Navigation》 2020年第1期113-125,共13页
In view of the influence of model errors in conventional BeiDou prediction models for clock offsets,a semiparametric adjustment model for BeiDou Navigation Satellite System(BDS)clock offset prediction that considers m... In view of the influence of model errors in conventional BeiDou prediction models for clock offsets,a semiparametric adjustment model for BeiDou Navigation Satellite System(BDS)clock offset prediction that considers model errors is proposed in this paper.First,the model errors of the conventional BeiDou clock offset prediction model are analyzed.Additionally,the relationship among the polynomial model,polynomial model with additional periodic term correction,and its periodic correction terms is explored in detail.Second,considering the model errors,combined with the physical relationship between phase,frequency,frequency drift,and its period in the clock sequence,the conventional clock offset prediction model is improved.Using kernel estimation and comprehensive least squares,the corresponding parameter solutions of the prediction model and the estimation of its model error are derived,and the dynamic error correction of the clock sequence model is realized.Finally,the BDS satellite precision clock data provided by the IGS Center of Wuhan University with a sampling interval of 5 min are used to compare the proposed prediction method with commonly used methods.Experimental results show that the proposed prediction method can better correct the model errors of BDS satellite clock offsets,and it can effectively overcome the inaccuracies of clock offset correction.The average forecast accuracies of the BeiDou satellites at 6,12,and 24 h are 27.13%,37.71%,and 45.08%higher than those of the conventional BeiDou clock offset forecast models;the average model improvement rates are 16.92%,20.96%,and 28.48%,respectively.In addition,the proposed method enhances the existing BDS satellite prediction method for clock offsets to a certain extent. 展开更多
关键词 BDS Satellite clock offset model errors Semiparametric adjustment model Clock offset forecast
原文传递
Revisiting Total Model Errors and Model Validation
8
作者 LJUNG Lennart 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第5期1598-1603,共6页
The paper contains a discussion of earlier work on Total Model Errors and Model Validation.It is maintained that the recent change of paradigm to kernel based system identification has also affected the basis for(and ... The paper contains a discussion of earlier work on Total Model Errors and Model Validation.It is maintained that the recent change of paradigm to kernel based system identification has also affected the basis for(and interest in)giving bounds for the total model error. 展开更多
关键词 BIAS kernel methods model errors REGULARIZATION system identification variance
原文传递
Error model identification of inertial navigation platform based on errors-in-variables model 被引量:6
9
作者 Liu Ming Liu Yu Su Baoku 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期388-393,共6页
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo... Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method. 展开更多
关键词 errors-in-variables model total least squares method inertial navigation platform error model identification
在线阅读 下载PDF
Positional Error Model of Line Segments with Modeling and Measuring Errors Using Brownian Bridge 被引量:1
10
作者 Xiaohua TONG Lejingyi ZHOU Yanmin JIN 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第2期1-10,共10页
Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also... Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data. 展开更多
关键词 spatial data line segment modeling error measuring error Brownian bridge
在线阅读 下载PDF
Modeling, identification and compensation for geometric errors of laser annealing table 被引量:1
11
作者 李殿新 张建富 +1 位作者 张云亮 冯平法 《Journal of Central South University》 SCIE EI CAS 2014年第3期904-911,共8页
In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error m... In order to improve the process precision of an XY laser annealing table, a geometric error modeling, and an identification and compensation method were proposed. Based on multi-body system theory, a geometric error model for the laser annealing table was established. It supports the identification of 7 geometric errors affecting the annealing accuracy. An original identification method was presented to recognize these geometric errors. Positioning errors of 5 lines in the workspace were measured by a laser interferometer, and the 7 geometric errors were identified by the proposed algorithm. Finally, a software-based error compensation method was adopted, and a compensation mechanism was developed in a postprocessor based on LabVIEW. The identified geometric errors can be compensated by converting ideal NC codes to actual NC codes. A validation experiment has been conducted on the laser annealing table, and the results indicate that positioning errors of two validation lines decreased from ±37 μm and ±33 μm to ±5 μm and ±4.5 μm, respectively. The geometric error modeling, identification and compensation method presented in this work can be straightforwardly extended to any configurations of 2-dimensional worktable. 展开更多
关键词 geometric error error modeling error measurement error identification error compensation laser annealing table
在线阅读 下载PDF
Modeling and verification of comprehensive errors of real-time wear-depth detecting for spherical plain bearing tester 被引量:1
12
作者 LI Wei HU Zhan-qi +2 位作者 YANG Vu-lin FAN Bing-li ZHOU Hai-li 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期533-545,共13页
Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its tes... Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions. 展开更多
关键词 spherical plain bearing tester self-lubricating spherical plain bearing wear depth multi-body system theory comprehensive error model thermal error
在线阅读 下载PDF
Geometric error measuring,modeling,and compensation for CNC machine tools:A review 被引量:14
13
作者 Zhao ZHANG Feng JIANG +3 位作者 Ming LUO Baohai WU Dinghua ZHANG Kai TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期163-198,共36页
Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining qualit... Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining quality of manufactured parts,it has been a popular topic for academic and industrial research for many years.A great deal of research work has been carried out since the 1970s for solving the problem and improving the machining accuracy.Researchers have studied how to measure,detect,model,identify,reduce,and compensate the geometric errors.This paper presents a thorough review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to geometric errors.Recent advances in measuring the geometrical errors of machine tools are summarized,and different kinds of error identification methods of translational axes and rotation axes are illustrated respectively.Besides,volumetric geometric error modeling,tracing,and compensation techniques for five-axis machine tools are emphatically introduced.Finally,research challenges in order to improve the volumetric accuracy of machine tools are also highlighted. 展开更多
关键词 Error compensation Error identification Error measurement Error modeling Geometric error Machine tools
原文传递
Non-gaussian Test Models for Prediction and State Estimation with Model Errors
14
作者 Michal BRANICKI Nan CHEN Andrew J.MAJDA 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第1期29-64,共36页
Turbulent dynamical systems involve dynamics with both a large dimensional phase space and a large number of positive Lyapunov exponents. Such systems are ubiqui- tous in applications in contemporary science and engin... Turbulent dynamical systems involve dynamics with both a large dimensional phase space and a large number of positive Lyapunov exponents. Such systems are ubiqui- tous in applications in contemporary science and engineering where the statistical ensemble prediction and the real time filtering/state estimation are needed despite the underlying complexity of the system. Statistically exactly solvable test models have a crucial role to provide firm mathematical underpinning or new algorithms for vastly more complex scien- tific phenomena. Here, a class of statistically exactly solvable non-Gaussian test models is introduced, where a generalized Feynman-Ka~ formulation reduces the exact behavior of conditional statistical moments to the solution to inhomogeneous Fokker-Planck equations modified by linear lower order coupling and source terms. This procedure is applied to a test model with hidden instabilities and is combined with information theory to address two important issues in the contemporary statistical prediction of turbulent dynamical systems: the coarse-grained ensemble prediction in a perfect model and the improving long range forecasting in imperfect models. The models discussed here should be use- ful for many other applications and algorithms for the real time prediction and the state estimation. 展开更多
关键词 PREDICTION model error Information theory Feynman-Kac framework Fokker planck Turbulent dynamical systems
原文传递
Resolution performance analysis of cumulants-based rank reduction estimator in presence of unexpected modeling errors
15
作者 王鼎 吴瑛 《Journal of Central South University》 SCIE EI CAS 2013年第11期3116-3130,共15页
Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and... Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view. 展开更多
关键词 performance analysis rank reduction estimator (RARE) fourth-order cumulants (FOC) spatial spectrum angle resolution probability unexpected modeling errors
在线阅读 下载PDF
Performance of cumulant-based rank reduction estimator in presence of unexpected modeling errors
16
作者 王鼎 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期992-1001,共10页
Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative i... Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE. 展开更多
关键词 fourth-order cumulants(FOC) rank reduction estimator(RARE) modeling error mean square error(MSE)
在线阅读 下载PDF
Automatic modeling algorithm of stochastic error for inertial sensors
17
作者 Luodi Zhao Long Zhao 《Control Theory and Technology》 EI CSCD 2024年第1期81-91,共11页
This paper proposes an automatic algorithm to determine the properties of stochastic processes and their parameters for inertial error. The proposed approach is based on a recently developed method called the generali... This paper proposes an automatic algorithm to determine the properties of stochastic processes and their parameters for inertial error. The proposed approach is based on a recently developed method called the generalized method of wavelet moments (GMWM), whose estimator was proven to be consistent and asymptotically normally distributed. This algorithm is suitable mainly (but not only) for the combination of several stochastic processes, where the model identification and parameter estimation are quite difficult for the traditional methods, such as the Allan variance and the power spectral density analysis. This algorithm further explores the complete stochastic error models and the candidate model ranking criterion to realize automatic model identification and determination. The best model is selected by making the trade-off between the model accuracy and the model complexity. The validation of this approach is verified by practical examples of model selection for MEMS-IMUs (micro-electro-mechanical system inertial measurement units) in varying dynamic conditions. 展开更多
关键词 GMWM Stochastic process Inertial sensor Sensor calibration Error model Allan variance
原文传递
R-Factor Analysis of Data Based on Population Models Comprising R- and Q-Factors Leads to Biased Loading Estimates
18
作者 André Beauducel 《Open Journal of Statistics》 2024年第1期38-54,共17页
Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- a... Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis. 展开更多
关键词 R-Factor Analysis Q-Factor Analysis Loading Bias model Error Multivariate Kurtosis
在线阅读 下载PDF
Neural network based method for compensating model error 被引量:2
19
作者 胡伍生 孙璐 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期400-403,共4页
Two traditional methods for compensating function model errors, the method of adding systematic parameters and the least-squares collection method, are introduced. A proposed method based on a BP neural network (call... Two traditional methods for compensating function model errors, the method of adding systematic parameters and the least-squares collection method, are introduced. A proposed method based on a BP neural network (called the H-BP algorithm) for compensating function model errors is put forward. The function model is assumed as y =f(x1, x2,… ,xn), and the special structure of the H-BP algorithm is determined as ( n + 1) ×p × 1, where (n + 1) is the element number of the input layer, and the elements are xl, x2,…, xn and y' ( y' is the value calculated by the function model); p is the element number of the hidden layer, and it is usually determined after many tests; 1 is the dement number of the output layer, and the element is △y = y0-y'(y0 is the known value of the sample). The calculation steps of the H-BP algorithm are introduced in detail. And then, the results of three methods for compensating function model errors from one engineering project are compared with each other. After being compensated, the accuracy of the traditional methods is about ± 19 mm, and the accuracy of the H-BP algorithm is ± 4. 3 mm. It shows that the proposed method based on a neural network is more effective than traditional methods for compensating function model errors. 展开更多
关键词 model error neural network BP algorithm compen- sating
在线阅读 下载PDF
Theoretical Basis and Application of an Analogue-Dynamical Model in the Lorenz System 被引量:7
20
作者 任宏利 丑纪范 +1 位作者 黄建平 张培群 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期67-77,共11页
The theoretical basis and application of an analogue-dynamical model (ADM) in the Lorenz system is studied. The ADM can effectively combine statistical and dynamical methods in which the small disturbance of the cur... The theoretical basis and application of an analogue-dynamical model (ADM) in the Lorenz system is studied. The ADM can effectively combine statistical and dynamical methods in which the small disturbance of the current initial value superimposed on the historical analogue reference state can be regarded as a prediction objective. Primary analyses show that under the condition of appending disturbances in model parameters, the model errors of ADM are much smaller than those of the pure dynamical model (PDM). The characteristics of predictability on the ADM in the Lorenz system are analyzed in phase space by conducting case studies and global experiments. The results show that the ADM can quite effectively reduce prediction errors and prolong the valid time of the prediction in most situations in contrast to the PDM, but when model errors are considerably small, the latter will be superior to the former. To overcome such a problem, the multi-reference-state updating can be applied to introduce the information of multi-analogue and update analogue and can exhibit exciting performance in the ADM. 展开更多
关键词 analogue-dynamical model Lorenz system PREDICTABILITY model errors
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部