The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. ...The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability.展开更多
To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un...To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.展开更多
20-high mills often face various flatness problems in the production of cold-rolled stainless steel thin strips.The flatness prediction model is essential for flatness control techniques.A novel rapid prediction model...20-high mills often face various flatness problems in the production of cold-rolled stainless steel thin strips.The flatness prediction model is essential for flatness control techniques.A novel rapid prediction model for flatness in a 20-high mill is proposed based on a model coupling method capable of forecasting the flatness of cold-rolled stainless steel thin strips under symmetric and asymmetric rolling conditions.The model integrates deformation coordination equations between rolls,force and moment balance equations,strip exit transverse displacement equations,and no-load roll gap equations into a unified set of linear equations.This solution process avoids repeated iterations between the elastic deformation model of the roll system and the plastic deformation model of the strip,which is a limitation of the traditional method and significantly improves the calculation speed and stability.The accuracy of the model was verified via a ZR22B-52 Sendzimir 20-high mill.The measured and calculated flatness values highly coincided,confirming the model’s accuracy.Rolling calculations of 304 stainless steel thin strips demonstrate that the new model results are consistent with those of the traditional method.The calculation time of the new model is only approximately 0.04%-0.35%that of the traditional method.On this basis,the impact of common flatness control methods on the flatness has been analyzed.展开更多
基金Sponsored by National Science and Technology Support Plan of China (2009AA04Z143)Science and Technology Support Plan of Hebei Province of China (10212101D)Important Natural Science Foundation of Hebei Province of China (E2006001038)
文摘The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2023YJS053)the National Natural Science Foundation of China(Grant No.52278386).
文摘To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future.
基金supported by the National Natural Science Foundation of China(No.U21A20118)the Natural Science Foundation of Hebei Province(No.E2023203065)the National Key Laboratory of Metal Forming Technology and Heavy Equipment,China National Heavy Machinery Research Institute Co.,Ltd.(No.S2208100.W04).Author infor。
文摘20-high mills often face various flatness problems in the production of cold-rolled stainless steel thin strips.The flatness prediction model is essential for flatness control techniques.A novel rapid prediction model for flatness in a 20-high mill is proposed based on a model coupling method capable of forecasting the flatness of cold-rolled stainless steel thin strips under symmetric and asymmetric rolling conditions.The model integrates deformation coordination equations between rolls,force and moment balance equations,strip exit transverse displacement equations,and no-load roll gap equations into a unified set of linear equations.This solution process avoids repeated iterations between the elastic deformation model of the roll system and the plastic deformation model of the strip,which is a limitation of the traditional method and significantly improves the calculation speed and stability.The accuracy of the model was verified via a ZR22B-52 Sendzimir 20-high mill.The measured and calculated flatness values highly coincided,confirming the model’s accuracy.Rolling calculations of 304 stainless steel thin strips demonstrate that the new model results are consistent with those of the traditional method.The calculation time of the new model is only approximately 0.04%-0.35%that of the traditional method.On this basis,the impact of common flatness control methods on the flatness has been analyzed.