Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con...Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con-flicts among production,living and ecological land are prevalent in coastal cities in the process of maintaining sustainable wetland resources and further developing the social economy.By establishing an SD-PLUS-CCD cou-pling model,this paper analysed the evolution characteristics and driving mechanism of the production-living-ecological space(PLES)and the effects of wetland protection(WLP)on promoting or inhibiting the coordinated development of the PLES in Dongying city during 2005-2060.The results show that(1)from 2005 to 2020,the increase in urban population resulted in a significant transfer of arable land and a reduction of 914 km2 in pro-duction space(PS);(2)from 2020 to 2060,under the WLP scenario,the conversion of wetland ecological space will reduce the PS and living space(LS)by 193.92 km2 and 107.14 km2,respectively,and increase the ecological space(ES)by 327.52 km2;and(3)wetland protection has an inhibitory effect on the coordinated development of PLES in the study area,and the total proportion of noncoordinated areas of PE and living-ecological space will continue to increase during the simulation period.This paper provides a solid theoretical support for the sustain-able management and protection of wetlands in coastal cities and possible PLES conflict patterns and provides a scientific basis for future territorial spatial planning and policy balance analysis.展开更多
The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. ...The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability.展开更多
Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an applic...Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme.展开更多
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ...The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.展开更多
The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computatio...The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model.展开更多
For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quanti...For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective.展开更多
The coupler is fundamental for a coupled model to realize complex interactions among component models.This paper focuses on the coupling process of Wave-Circulation(W-C) coupled model which consists of MASNUM(key labo...The coupler is fundamental for a coupled model to realize complex interactions among component models.This paper focuses on the coupling process of Wave-Circulation(W-C) coupled model which consists of MASNUM(key laboratory of marine science and numerical modeling wave model)and POM(Princeton Ocean Model).The current coupling module of this coupled model is based on the inefficient I/O file,which has already become a performance bottleneck especially when the coupled model utilizes a large number of processes.To improve the performance of the W-C model,a flexible coupling module based on the model coupling toolkit(MCT) is designed and implemented to replace the current I/O file coupling module in the coupled model.Empirical studies that we have carried out demonstrate that our online coupling module can dramatically improve the parallel performance of the coupled model.The online coupling module outperforms the I/O file coupling module.When processes increase to 96,the whole process of EXP-C takes only 695.8 seconds,which is only 58.8%of the execution time of EXP-F.Based on our experiments under 2D Parallel Decomposition(2DPD),we suggest setting parallel decomposition strategies automatically to component models in order to achieve high parallel efficiency.展开更多
Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie conditio...Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations.展开更多
This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious ...This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.展开更多
Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the m...Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
A coupling model is proposed in this paper by using the Green Function and Newman's product principle, and the solution method is provided here as well. This model can be used to describe the reservoir inflow and wel...A coupling model is proposed in this paper by using the Green Function and Newman's product principle, and the solution method is provided here as well. This model can be used to describe the reservoir inflow and wellbore flow for fishbone wells in an unsteady flow or pseudo-steady flow state. A case study indicates that the bottom hole pressure declines quickly in the unsteady flow period which is very short. The pressure drop per unit time remains unchanged under the pseudo-steady flow conditions. The distribution of flow rate along the main wellbore shows a wave shape under the unsteady flow condition, and the flow rate distribution in each branch is similar. The flow rate distribution along the main wellbore is irregular "U" shaped under the pseudo-steady flow condition, and the space-symmetrical branches have the same flow distribution pattern. In the initial production period, the flow rate increases significantly as the length of branches and the angle between branches and the main wellbore increase. As the production continues, the length and angle of branches have only a slight effect on the flow in fishbone wells.展开更多
In this work,a trickle-bed reactor coupled with catalyst pellet model is employed to understand the effects of the temperature and catalyst pellet structures on the reaction-diffusion behaviors in gas oil hydrodesulfu...In this work,a trickle-bed reactor coupled with catalyst pellet model is employed to understand the effects of the temperature and catalyst pellet structures on the reaction-diffusion behaviors in gas oil hydrodesulfurization(HDS).The non-isothermal reactor model is determined to be reasonable due to non-negligible temperature variation caused by the reaction heat.The reaction rate along the reactor is mainly dominated by the temperature,and the sulfur concentration gradient in the catalyst pellet decreases gradually along the reactor,leading to the increased internal effectiveness factor.For the fixed catalyst bed volume,there exists a compromise between the catalyst reaction rate and effectiveness factor.Under commonly studied catalyst pellet size of 0.8-3 mm and porosity of 0.4-0.8,an optimization of the temperature and catalyst pellet structures is carried out,and the optimized outlet sulfur content decreases to 7.6 wppm better than the commercial level at 0.96 mm of the catalyst pellet size and 0.40 of the catalyst porosity.展开更多
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di...Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.展开更多
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio...The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.展开更多
Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration a...Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration and temperature.The influence of lubrication on the vibration and temperature characteristics of the system is considered in the model,and the real-time relationship between them is built up by using the transient temperature field model.After considering the lubrication,the bearing outer ring vibration acceleration and node temperature considering grease are lower,which shows the necessity of adding the lubrication model.The corresponding experiments for characteristics of vibration and temperature of the model are respectively conducted.In the envelope spectrum obtained from the simulation signal and the experimental signal,the frequency values corresponding to the peaks are close to the theoretical calculation results,and the error is very small.In the three stages of the temperature characteristic experiment,the node temperature change of the simulation model is consistent with the experiment.The good agreement between simulation and experiments proves the effectiveness of the model.By studying the influence of the bearing angular and fault size on the system node temperature,as well as the change law of bearing lubrication characteristics and temperature,it is found that the worse the working condition is,the higher the temperature is.When the ambient temperature is low,the viscosity of grease increases,and the oil film becomes thicker,which increases the sliding probability of the rolling element,thus affecting the normal operation of the bearing,which explains the phenomenon of frequent bearing faults of high-speed trains in the low-temperature area of Northeast China.Further analysis shows that faults often occur in the early stage of train operation in the low-temperature environment.展开更多
For describing and resolving the process of chromium ore smelting reduction in a converter preferably, the coupling dynamic model was established based on the kinetic models of chromium ore dissolution and interfacial...For describing and resolving the process of chromium ore smelting reduction in a converter preferably, the coupling dynamic model was established based on the kinetic models of chromium ore dissolution and interfacial re- ducing reaction between the slag and metal. When 150 t stainless steel crude melts with chromium of 12% are produced in a smelting reduction converter with no initial chromium in metal at 1 560℃, the results of the coupling dynamic model show that the mean reduction rate and injection rate of chromium ore are 0. 091% ·min^-1 and 467 kg · min^-1 , respectively. The foundation of the coupling dynamic model provides a reference and basis on the constitution of rational processing route for a practical stainless steelmaking.展开更多
Based on the surface energy balance model which is widely used abroad, a temperature and humidity field coupling model of conservatory soil without crop vegetation in full illumination was established. Considering the...Based on the surface energy balance model which is widely used abroad, a temperature and humidity field coupling model of conservatory soil without crop vegetation in full illumination was established. Considering the relatively closed environment in conservatory, weak solar radiation and little surface evaporation of soil, the daily variation of water content in different soil layers may be neglected, then the temperature and humidity field coupling model was simplified to a one-dimensional thermal diffusion model. The simplified model and the temperature and humidity field coupling model adopted the same computational method of soil physical parameters and discrete format of heat diffusion differential equations, and were applied to the continuous simulation of temperature field in conservatory soil without crop vegetation in full illumination. Through the comparison between simulation results and experimental data, the precision of the simplified model was verified. The typical rule of soil heat flux variation in a 24 h cycle was also obtained.展开更多
The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydrau...The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.展开更多
In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidat...In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.展开更多
基金supported by the Joint Research program for Eco-logical Conservation and High-quality Development of the Yellow River Basin(Grant No.2022-YRUC-01-0103)Watershed Non-point Source Pollution Prevention and Control Technology and Application Demon-stration Project(Grant No.2021YFC3201505)+3 种基金the National Key Re-search and Development Project(Grant No.2016YFC0502106)the Natural Science Foundation of China(Grant No.41476161)the Spe-cial Project of National Natural Science Foundation of China(Grant No.42442035)the Fundamental Research Funds for the Central Uni-versities.
文摘Coastal cities hold a special position in the fields of production,living,and ecological research because of their unique wetland resource advantages.However,with global urbanization and rapid economic development,con-flicts among production,living and ecological land are prevalent in coastal cities in the process of maintaining sustainable wetland resources and further developing the social economy.By establishing an SD-PLUS-CCD cou-pling model,this paper analysed the evolution characteristics and driving mechanism of the production-living-ecological space(PLES)and the effects of wetland protection(WLP)on promoting or inhibiting the coordinated development of the PLES in Dongying city during 2005-2060.The results show that(1)from 2005 to 2020,the increase in urban population resulted in a significant transfer of arable land and a reduction of 914 km2 in pro-duction space(PS);(2)from 2020 to 2060,under the WLP scenario,the conversion of wetland ecological space will reduce the PS and living space(LS)by 193.92 km2 and 107.14 km2,respectively,and increase the ecological space(ES)by 327.52 km2;and(3)wetland protection has an inhibitory effect on the coordinated development of PLES in the study area,and the total proportion of noncoordinated areas of PE and living-ecological space will continue to increase during the simulation period.This paper provides a solid theoretical support for the sustain-able management and protection of wetlands in coastal cities and possible PLES conflict patterns and provides a scientific basis for future territorial spatial planning and policy balance analysis.
基金Sponsored by National Science and Technology Support Plan of China (2009AA04Z143)Science and Technology Support Plan of Hebei Province of China (10212101D)Important Natural Science Foundation of Hebei Province of China (E2006001038)
文摘The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability.
基金funded by CEA,EDF and Framatomefinancial and scientific support of CEA Cadarache.
文摘Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(Nos.52275044,U2233212)。
文摘The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.
基金supported by Shanghai 2021“Science and Technology Innovation Action Plan”:Social Development Science and Technology Research Project(Grant No.21DZ1202703).
文摘The numerical simulation of the fluid flow and the flexible rod(s)interaction is more complicated and has lower efficiency due to the high computational cost.In this paper,a semi-resolved model coupling the computational fluid dynamics and the flexible rod dynamics is proposed using a two-way domain expansion method.The gov-erning equations of the flexible rod dynamics are discretized and solved by the finite element method,and the fluid flow is simulated by the finite volume method.The interaction between fluids and solid rods is modeled by introducing body force terms into the momentum equations.Referred to the traditional semi-resolved numerical model,an anisotropic Gaussian kernel function method is proposed to specify the interactive forces between flu-ids and solid bodies for non-circle rod cross-sections.A benchmark of the flow passing around a single flexible plate with a rectangular cross-section is used to validate the algorithm.Focused on the engineering applications,a test case of a finite patch of cylinders is implemented to validate the accuracy and efficiency of the coupled model.
基金Supported by the National Defense Industrial Technology Development Program of China~~
文摘For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective.
基金Supported by the National High Technology Research and Development Programme(No.2010AA012400,2010AA012302)the National Natural Science Foundation of China(No.61040048)
文摘The coupler is fundamental for a coupled model to realize complex interactions among component models.This paper focuses on the coupling process of Wave-Circulation(W-C) coupled model which consists of MASNUM(key laboratory of marine science and numerical modeling wave model)and POM(Princeton Ocean Model).The current coupling module of this coupled model is based on the inefficient I/O file,which has already become a performance bottleneck especially when the coupled model utilizes a large number of processes.To improve the performance of the W-C model,a flexible coupling module based on the model coupling toolkit(MCT) is designed and implemented to replace the current I/O file coupling module in the coupled model.Empirical studies that we have carried out demonstrate that our online coupling module can dramatically improve the parallel performance of the coupled model.The online coupling module outperforms the I/O file coupling module.When processes increase to 96,the whole process of EXP-C takes only 695.8 seconds,which is only 58.8%of the execution time of EXP-F.Based on our experiments under 2D Parallel Decomposition(2DPD),we suggest setting parallel decomposition strategies automatically to component models in order to achieve high parallel efficiency.
基金a U.S. Federal Railroad Administration (FRA)BAA project,titled “Mitigation of Differential Movement at Railway Transitions for High-Speed Passenger Rail and Joint Passenger/Freight Corridors”the financial support provided by the China Scholarship Council (CSC),which funded Zhongyi Liu’s and Wenjing Li’s time and research efforts for this study
文摘Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations.
基金NationalNaturalScience Emphases Foundation ofChina,No.40335049NationalNaturalScience Foundation ofChina,No.40471059
文摘This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.
基金the NKBRSF Project! G 1999043400 the CNSF Project! 49735180.
文摘Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.
基金support from the National Science and Technology Major Projects of China(Grant No. 2011ZX05031-003)
文摘A coupling model is proposed in this paper by using the Green Function and Newman's product principle, and the solution method is provided here as well. This model can be used to describe the reservoir inflow and wellbore flow for fishbone wells in an unsteady flow or pseudo-steady flow state. A case study indicates that the bottom hole pressure declines quickly in the unsteady flow period which is very short. The pressure drop per unit time remains unchanged under the pseudo-steady flow conditions. The distribution of flow rate along the main wellbore shows a wave shape under the unsteady flow condition, and the flow rate distribution in each branch is similar. The flow rate distribution along the main wellbore is irregular "U" shaped under the pseudo-steady flow condition, and the space-symmetrical branches have the same flow distribution pattern. In the initial production period, the flow rate increases significantly as the length of branches and the angle between branches and the main wellbore increase. As the production continues, the length and angle of branches have only a slight effect on the flow in fishbone wells.
基金supported by the National Key R&D Program of China(2018YFB0604500)the National Natural Science Foundation of China(21922803 and 21776077)+4 种基金the Shanghai Natural Science Foundation(17ZR1407300 and 17ZR1407500)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Shanghai Rising-Star Program(17QA1401200)the Open Project of SKLOCE(SKL-Che-15C03)the 111 Project of the Ministry of Education of China(B08021)。
文摘In this work,a trickle-bed reactor coupled with catalyst pellet model is employed to understand the effects of the temperature and catalyst pellet structures on the reaction-diffusion behaviors in gas oil hydrodesulfurization(HDS).The non-isothermal reactor model is determined to be reasonable due to non-negligible temperature variation caused by the reaction heat.The reaction rate along the reactor is mainly dominated by the temperature,and the sulfur concentration gradient in the catalyst pellet decreases gradually along the reactor,leading to the increased internal effectiveness factor.For the fixed catalyst bed volume,there exists a compromise between the catalyst reaction rate and effectiveness factor.Under commonly studied catalyst pellet size of 0.8-3 mm and porosity of 0.4-0.8,an optimization of the temperature and catalyst pellet structures is carried out,and the optimized outlet sulfur content decreases to 7.6 wppm better than the commercial level at 0.96 mm of the catalyst pellet size and 0.40 of the catalyst porosity.
基金the National Key R&D Program of China(No.2019YFB1504102).
文摘Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.
基金Supported by National Natural Science Foundation of China(Grant No.51375424)
文摘The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.
基金supported by the National Key R&D Program of China(No.2020YFB2007700)the National Natural Science Foundation of China(Nos.11790282,12032017,12002221,and 11872256)+1 种基金the S&T Program of Hebei Province of China(No.20310803D)the Natural Science Foundation of Hebei Province of China(No.A2020210028)。
文摘Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration and temperature.The influence of lubrication on the vibration and temperature characteristics of the system is considered in the model,and the real-time relationship between them is built up by using the transient temperature field model.After considering the lubrication,the bearing outer ring vibration acceleration and node temperature considering grease are lower,which shows the necessity of adding the lubrication model.The corresponding experiments for characteristics of vibration and temperature of the model are respectively conducted.In the envelope spectrum obtained from the simulation signal and the experimental signal,the frequency values corresponding to the peaks are close to the theoretical calculation results,and the error is very small.In the three stages of the temperature characteristic experiment,the node temperature change of the simulation model is consistent with the experiment.The good agreement between simulation and experiments proves the effectiveness of the model.By studying the influence of the bearing angular and fault size on the system node temperature,as well as the change law of bearing lubrication characteristics and temperature,it is found that the worse the working condition is,the higher the temperature is.When the ambient temperature is low,the viscosity of grease increases,and the oil film becomes thicker,which increases the sliding probability of the rolling element,thus affecting the normal operation of the bearing,which explains the phenomenon of frequent bearing faults of high-speed trains in the low-temperature area of Northeast China.Further analysis shows that faults often occur in the early stage of train operation in the low-temperature environment.
基金Sponsored by National Natural Science Foundation of China(50904017)Open Subject Fund of State Key Laboratory of Rolling and Automation of NEU of China(2009003)
文摘For describing and resolving the process of chromium ore smelting reduction in a converter preferably, the coupling dynamic model was established based on the kinetic models of chromium ore dissolution and interfacial re- ducing reaction between the slag and metal. When 150 t stainless steel crude melts with chromium of 12% are produced in a smelting reduction converter with no initial chromium in metal at 1 560℃, the results of the coupling dynamic model show that the mean reduction rate and injection rate of chromium ore are 0. 091% ·min^-1 and 467 kg · min^-1 , respectively. The foundation of the coupling dynamic model provides a reference and basis on the constitution of rational processing route for a practical stainless steelmaking.
文摘Based on the surface energy balance model which is widely used abroad, a temperature and humidity field coupling model of conservatory soil without crop vegetation in full illumination was established. Considering the relatively closed environment in conservatory, weak solar radiation and little surface evaporation of soil, the daily variation of water content in different soil layers may be neglected, then the temperature and humidity field coupling model was simplified to a one-dimensional thermal diffusion model. The simplified model and the temperature and humidity field coupling model adopted the same computational method of soil physical parameters and discrete format of heat diffusion differential equations, and were applied to the continuous simulation of temperature field in conservatory soil without crop vegetation in full illumination. Through the comparison between simulation results and experimental data, the precision of the simplified model was verified. The typical rule of soil heat flux variation in a 24 h cycle was also obtained.
基金Project(50139030) supported by the National Natural Science Foundation of ChinaProject(501072) supported by the Scientific Research Foundation for the Returned Overseas Scholars of the Ministry of Education of China
文摘The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.
文摘In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.