A new series of benzothiazole Schiff bases 3–29 was synthesized and screened for antitumor activity against cervical cancer(Hela) and kidney fibroblast cancer(COS-7) cell lines. Results indicated that compounds 3...A new series of benzothiazole Schiff bases 3–29 was synthesized and screened for antitumor activity against cervical cancer(Hela) and kidney fibroblast cancer(COS-7) cell lines. Results indicated that compounds 3, 14, 19, 27 and 28 have promising activity against Hela cell line with IC50 values of 2.41,3.06, 6.46, 2.22 and 6.25 mmol/L, respectively, in comparison to doxorubicin as a reference antitumor agent(IC50 2.05 mmol/L). In addition, compound 3 displayed excellent activity against COS-7 cell line with IC50 value of 4.31 mmol/L in comparison to doxorubicin(IC50 3.04 mmol/L). In the present work,structure based pharmacophore mapping, molecular docking, protein-ligand interaction, fingerprints and binding energy calculations were employed in a virtual screening strategy to identify the interaction between the compounds and the active site of the putative target, EGFR tyrosine kinase. Molecular properties, toxicity, drug-likeness, and drug score profiles of compounds 3, 14, 19, 27, 28 and 29 were also assessed.展开更多
Offline policy evaluation,evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning.At present,the model-based offline policy evaluation(MBOPE)...Offline policy evaluation,evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning.At present,the model-based offline policy evaluation(MBOPE)is widely welcomed because of its easy to implement and good performance.MBOPE directly approximates the unknown value of a given policy using the Monte Carlo method given the estimated transition and reward functions of the environment.Usually,multiple models are trained,and then one of them is selected to be used.However,a challenge remains in selecting an appropriate model from those trained for further use.The authors first analyse the upper bound of the difference between the approximated value and the unknown true value.Theoretical results show that this difference is related to the trajectories generated by the given policy on the learnt model and the prediction error of the transition and reward functions at these generated data points.Based on the theoretical results,a new criterion is proposed to tell which trained model is better suited for evaluating the given policy.At last,the effectiveness of the proposed criterion is demonstrated on both benchmark and synthetic offline datasets.展开更多
Proteolysis-targeting chimeras(PROTACs)represent a promising class of drugs that can target disease-causing proteins more effectively than traditional small molecule inhibitors can,potentially revolutionizing drug dis...Proteolysis-targeting chimeras(PROTACs)represent a promising class of drugs that can target disease-causing proteins more effectively than traditional small molecule inhibitors can,potentially revolutionizing drug discovery and treatment strategies.However,the links between in vitro and in vivo data are poorly understood,hindering a comprehensive understanding of the absorption,distribution,metabolism,and excretion(ADME)of PROTACs.In this work,14C-labeled vepdegestrant(ARV-471),which is currently in phase III clinical trials for breast cancer,was synthesized as a model PROTAC to characterize its preclinical ADME properties and simulate its clinical pharmacokinetics(PK)by establishing a physiologically based pharmacokinetics(PBPK)model.For in vitro–in vivo extrapolation(IVIVE),hepatocyte clearance correlated more closely with in vivo rat PK data than liver microsomal clearance did.PBPK models,which were initially developed and validated in rats,accurately simulate ARV-471's PK across fed and fasted states,with parameters within 1.75-fold of the observed values.Human models,informed by in vitro ADME data,closely mirrored postoral dose plasma profiles at 30 mg.Furthermore,no human-specific metabolites were identified in vitro and the metabolic profile of rats could overlap that of humans.This work presents a roadmap for developing future PROTAC medications by elucidating the correlation between in vitro and in vivo characteristics.展开更多
With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ...With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.展开更多
In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gau...In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.展开更多
Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel mo...Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel modelling method for a highly nonlinear system of a hydraulic excavator is presented. Based on the data collected in the excavator's arms driving experiments, a data-based excavator dynamic model using Simplified Refined Instrumental Variable (SRIV) identification and estimation algorithms is established. The validity of the proposed data-based model is indirectly demonstrated by the performance of computer simulation and the.real machine motion control exoeriments.展开更多
This paper presents a state-of-the-art review in modeling approach of hardware in the loop simulation(HILS)realization of electric machine drives using commercial real time machines.HILS implementation using digital s...This paper presents a state-of-the-art review in modeling approach of hardware in the loop simulation(HILS)realization of electric machine drives using commercial real time machines.HILS implementation using digital signal processors(DSPs)and field programmable gate array(FPGA)for electric machine drives has been investigated but those methods have drawbacks such as complexity in development and verification.Among various HILS implementation approaches,more efficient development and verification for electric machine drives can be achieved through use of commercial real time machines.As well as implementation of the HILS,accurate modeling of a control target system plays an important role.Therefore,modeling trend in electric machine drives for HILS implementation is needed to be reviewed.This paper provides a background of HILS and commercially available real time machines and characteristics of each real time machine are introduced.Also,recent trends and progress of permanent magnet synchronous machines(PMSMs)modeling are presented for providing more accurate HILS implementation approaches in this paper.展开更多
In the manufacturing of thin wall components for aerospace industry,apart from the side wall contour error,the Remaining Bottom Thickness Error(RBTE)for the thin-wall pocket component(e.g.rocket shell)is of the same i...In the manufacturing of thin wall components for aerospace industry,apart from the side wall contour error,the Remaining Bottom Thickness Error(RBTE)for the thin-wall pocket component(e.g.rocket shell)is of the same importance but overlooked in current research.If the RBTE reduces by 30%,the weight reduction of the entire component will reach up to tens of kilograms while improving the dynamic balance performance of the large component.Current RBTE control requires the off-process measurement of limited discrete points on the component bottom to provide the reference value for compensation.This leads to incompleteness in the remaining bottom thickness control and redundant measurement in manufacturing.In this paper,the framework of data-driven physics based model is proposed and developed for the real-time prediction of critical quality for large components,which enables accurate prediction and compensation of RBTE value for the thin wall components.The physics based model considers the primary root cause,in terms of tool deflection and clamping stiffness induced Axial Material Removal Thickness(AMRT)variation,for the RBTE formation.And to incorporate the dynamic and inherent coupling of the complicated manufacturing system,the multi-feature fusion and machine learning algorithm,i.e.kernel Principal Component Analysis(kPCA)and kernel Support Vector Regression(kSVR),are incorporated with the physics based model.Therefore,the proposed data-driven physics based model combines both process mechanism and the system disturbance to achieve better prediction accuracy.The final verification experiment is implemented to validate the effectiveness of the proposed method for dimensional accuracy prediction in pocket milling,and the prediction accuracy of AMRT achieves 0.014 mm and 0.019 mm for straight and corner milling,respectively.展开更多
Climate change can escalate rainfall intensity and cause further increase in sediment transport in arid lands which in turn can adversely affect water quality. Hence, there is a strong need to predict the fate of sedi...Climate change can escalate rainfall intensity and cause further increase in sediment transport in arid lands which in turn can adversely affect water quality. Hence, there is a strong need to predict the fate of sediments in order to provide measures for sound erosion control and water quality management. The presence of micro- topography on hillslopes influences processes of runoff generation and erosion, which should be taken into account to achieve more accurate modelling results. This study presents a physically based mathematical model for erosion and sediment transport coupled to one-dimensional overland flow equations that simulate rainfall-runoff generation on the rill and interrill areas of a bare hillslope. Modelling effort at such a fine resolution considering the flow con- nection between Jnterrill areas and rills is rarely verified. The developed model was applied on a set of data gath- ered from an experimental setup where a 650 cm×136 cm erosion flume was pre-formed with a longitudinal rill and interrJll having a plane geometry and was equipped with a rainfall simulator that reproduces natural rainfall characteristics. The flume can be given both longitudinal and lateral slope directions. For calibration and validation, the model was applied on the experimental results obtained from the setup of the flume having 5% lateral and 10% longitudinal slope directions under rainfall intensities of 105 and 45 mm/h, respectively. Calibration showed that the model was able to produce good results based on the R2 (0.84) and NSE (0.80) values. The model performance was further tested through validation which also produced good statistics (R2=0.83, NSE=0.72). Results in terms of the sedigraphs, cumulative mass curves and performance statistics suggest that the model can be a useful and an important step towards verifying and improving mathematical models of erosion and sediment transport.展开更多
To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved p...To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.展开更多
The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of tra...The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of transfer process in nonideal multicomponent distillation column,a method was developed with equilibrium stage models(EQ)and non-equilibrium model(NEQ)incorporated with Maxwell-Stefan diffusion equations in the framework of AspenONE simulator.Dortmund Modified UNIFAC(UNIFAC-DMD)thermodynamic model was employed to estimate activity coefficients.In addition,to understand the reason for the diffusion against driving force and the different results by EQ and NEQ models,explicit investigations were made on diffusion coefficients, component Murphree efficiency and mass transfer coefficients.The results provide valuable information for basic design and applications associated with extractive distillation.展开更多
The key to studying urban sustainable development depends on quantifying stores, efficiencies of urban metabolisms and capturing urban metabolisms′ mechanisms. This paper builds up the metabolic emergy account and qu...The key to studying urban sustainable development depends on quantifying stores, efficiencies of urban metabolisms and capturing urban metabolisms′ mechanisms. This paper builds up the metabolic emergy account and quantifies some important concepts of emergy stores. Emphasis is placed on the urban metabolic model based on the slack based model(SBM) method to measure urban metabolic efficiencies. Urban metabolic mechanisms are discussed by using the regression method. By integrating these models, this paper analyzes the urban metabolic development in Beijing from 2001 to 2010. We conclude that the metabolic emergy stores of Beijing increased significantly from 2001 to 2010, with the emergy imported accounting for most of the increase. The metabolic efficiencies in Beijing have improved since the 2008 Olympic Games. The population, economic growth, industrial structures, and environmental governance positively affect the overall urban metabolism, while the land expansion, urbanization and environmentally technical levels hinder the improving of urban metabolic efficiencies. The SBM metabolic method and the regression model based on the emergy analysis provide insights into the urban metabolic efficiencies and the mechanism. They can promote to integrate such concepts into their sustainability analyses and policy decisions.展开更多
A model based method which recruited the extended Kalman filter (EKF) to estimate the full state of charge (SOC) of Li-ion battery was proposed. The underlying dynamic behavior of the cell pack was described based...A model based method which recruited the extended Kalman filter (EKF) to estimate the full state of charge (SOC) of Li-ion battery was proposed. The underlying dynamic behavior of the cell pack was described based on an equivalent circuit comprising of two capacitors and three resistors. Measurements in two tests were applied to compare the SOC estimated by model based EKF estimation with the SOC calculated by coulomb counting. Results have shown that the proposed method is able to perform a good estimation of the SOC of battery packs. Moreover, a corresponding battery management systems (BMS) including software and hardware based on this method was designed.展开更多
This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While p...This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.展开更多
This paper is devoted to analyze and model user reading and replying activities in a bulletin board system(BBS)social network.By analyzing the data set from a famous Chinese BBS social network,we show how some user ac...This paper is devoted to analyze and model user reading and replying activities in a bulletin board system(BBS)social network.By analyzing the data set from a famous Chinese BBS social network,we show how some user activities distribute,and reveal several important features that might characterize user dynamics.We propose a method to model user activities in the BBS social network.The model could reproduce power-law and non-power-law distributions of user activities at the same time.Our results show that user reading and replying activities could be simulated through simple agent-based models.Specifically,manners of how the BBS server interacts with Internet users in the Web 2.0 application,how users organize their reading lists,and how user behavioral trait distributes are the important factors in the formation of activity patterns.展开更多
This paper reviews a class of important models of granular computing which are induced by equivalence relations,or by general binary relations,or by neighborhood systems,and propose a class of models of granular compu...This paper reviews a class of important models of granular computing which are induced by equivalence relations,or by general binary relations,or by neighborhood systems,and propose a class of models of granular computing which are induced by coverings of the given universe.展开更多
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor...Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials.展开更多
The current life-prediction models for lithium-ion batteries have several problems, such as the construction of complex feature structures, a high number of feature dimensions, and inaccurate prediction results. To ov...The current life-prediction models for lithium-ion batteries have several problems, such as the construction of complex feature structures, a high number of feature dimensions, and inaccurate prediction results. To overcome these problems, this paper proposes a deep-learning model combining an autoencoder network and a long short-term memory network. First, this model applies the characteristics of the autoencoder to reduce the dimensionality of the high-dimensional features extracted from the battery data set and realize the fusion of complex time-domain features, which overcomes the problems of redundant model information and low computational efficiency. This model then uses a long short-term memory network that is sensitive to time-series data to solve the long-path dependence problem in the prediction of battery life. Lastly, the attention mechanism is used to give greater weight to features that have a greater impact on the target value, which enhances the learning effect of the model on the long input sequence. To verify the efficacy of the proposed model, this paper uses NASA's lithium-ion battery cycle life data set.展开更多
Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to rea...Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.展开更多
Tree mortality models play an important role in predicting tree growth and yield,but existing mortality models for Larix gmelinii subsp.principis-rupprechtii,an important species used for regeneration and afforestatio...Tree mortality models play an important role in predicting tree growth and yield,but existing mortality models for Larix gmelinii subsp.principis-rupprechtii,an important species used for regeneration and afforestation in northern China,have overlooked potential regional influences on tree mortality.This study used data acquired from 102 temporary sample plots(TSPs)in natural stands of Prince Rupprecht larch in the state-owned Guandi Mountain Forest(n=67)and state-owned Boqiang Forest(n=35)in northern China.To model stand-level tree mortality,we compared seven model forms of county data.Three continuous(dominant height,plot mean diameter,and basal area per hectare)and one dummy variable with two levels(region)were used as fixed effects variables.Tree morality variations caused by forest blocks were accounted for using forest blocks as a random effect in selected models.Results showed that tree mortality significantly positively correlated with stand basal area and dominant height,but negatively correlated with stand mean diameter.Incorporating both the dummy variables and random effects into the tree mortality models significantly increased the fitting improvements,and Hurdle Poisson mixed-effects model showed the most attractive fit statistics(largest R^(2)and smallest RMSE)when employing leave-one-out cross-validation.These mixed-effects dummy variable models will be useful for accurately predicting Larix tree mortality in different regions.展开更多
文摘A new series of benzothiazole Schiff bases 3–29 was synthesized and screened for antitumor activity against cervical cancer(Hela) and kidney fibroblast cancer(COS-7) cell lines. Results indicated that compounds 3, 14, 19, 27 and 28 have promising activity against Hela cell line with IC50 values of 2.41,3.06, 6.46, 2.22 and 6.25 mmol/L, respectively, in comparison to doxorubicin as a reference antitumor agent(IC50 2.05 mmol/L). In addition, compound 3 displayed excellent activity against COS-7 cell line with IC50 value of 4.31 mmol/L in comparison to doxorubicin(IC50 3.04 mmol/L). In the present work,structure based pharmacophore mapping, molecular docking, protein-ligand interaction, fingerprints and binding energy calculations were employed in a virtual screening strategy to identify the interaction between the compounds and the active site of the putative target, EGFR tyrosine kinase. Molecular properties, toxicity, drug-likeness, and drug score profiles of compounds 3, 14, 19, 27, 28 and 29 were also assessed.
文摘Offline policy evaluation,evaluating and selecting complex policies for decision-making by only using offline datasets is important in reinforcement learning.At present,the model-based offline policy evaluation(MBOPE)is widely welcomed because of its easy to implement and good performance.MBOPE directly approximates the unknown value of a given policy using the Monte Carlo method given the estimated transition and reward functions of the environment.Usually,multiple models are trained,and then one of them is selected to be used.However,a challenge remains in selecting an appropriate model from those trained for further use.The authors first analyse the upper bound of the difference between the approximated value and the unknown true value.Theoretical results show that this difference is related to the trajectories generated by the given policy on the learnt model and the prediction error of the transition and reward functions at these generated data points.Based on the theoretical results,a new criterion is proposed to tell which trained model is better suited for evaluating the given policy.At last,the effectiveness of the proposed criterion is demonstrated on both benchmark and synthetic offline datasets.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82373938,82104275,and 82204585)Key Technologies R&D Program of Guangdong Province,China(Grant No.:2023B1111030004)National Key R&D Program of China(Grant No.:2022YFF1202600).
文摘Proteolysis-targeting chimeras(PROTACs)represent a promising class of drugs that can target disease-causing proteins more effectively than traditional small molecule inhibitors can,potentially revolutionizing drug discovery and treatment strategies.However,the links between in vitro and in vivo data are poorly understood,hindering a comprehensive understanding of the absorption,distribution,metabolism,and excretion(ADME)of PROTACs.In this work,14C-labeled vepdegestrant(ARV-471),which is currently in phase III clinical trials for breast cancer,was synthesized as a model PROTAC to characterize its preclinical ADME properties and simulate its clinical pharmacokinetics(PK)by establishing a physiologically based pharmacokinetics(PBPK)model.For in vitro–in vivo extrapolation(IVIVE),hepatocyte clearance correlated more closely with in vivo rat PK data than liver microsomal clearance did.PBPK models,which were initially developed and validated in rats,accurately simulate ARV-471's PK across fed and fasted states,with parameters within 1.75-fold of the observed values.Human models,informed by in vitro ADME data,closely mirrored postoral dose plasma profiles at 30 mg.Furthermore,no human-specific metabolites were identified in vitro and the metabolic profile of rats could overlap that of humans.This work presents a roadmap for developing future PROTAC medications by elucidating the correlation between in vitro and in vivo characteristics.
基金Aeronautical Science Foundation of China (2006ZA51004)
文摘With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.
基金Supported by the National Creative Research Groups Science Foundation of China (60421002) and National Basic Research Program of China (2007CB714000).
文摘In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.
文摘Instead of establishing mathematical hydraulic system models from physical laws usually done with the problems of complex modelling processes, low reliability and practicality caused by large uncertainties, a novel modelling method for a highly nonlinear system of a hydraulic excavator is presented. Based on the data collected in the excavator's arms driving experiments, a data-based excavator dynamic model using Simplified Refined Instrumental Variable (SRIV) identification and estimation algorithms is established. The validity of the proposed data-based model is indirectly demonstrated by the performance of computer simulation and the.real machine motion control exoeriments.
基金supported in part by the National Research Foundation of Korea(NRF)grant funded by Korea government(No.2020R1C1C1013260)in part by INHA UNIVERSITY Research Grant.
文摘This paper presents a state-of-the-art review in modeling approach of hardware in the loop simulation(HILS)realization of electric machine drives using commercial real time machines.HILS implementation using digital signal processors(DSPs)and field programmable gate array(FPGA)for electric machine drives has been investigated but those methods have drawbacks such as complexity in development and verification.Among various HILS implementation approaches,more efficient development and verification for electric machine drives can be achieved through use of commercial real time machines.As well as implementation of the HILS,accurate modeling of a control target system plays an important role.Therefore,modeling trend in electric machine drives for HILS implementation is needed to be reviewed.This paper provides a background of HILS and commercially available real time machines and characteristics of each real time machine are introduced.Also,recent trends and progress of permanent magnet synchronous machines(PMSMs)modeling are presented for providing more accurate HILS implementation approaches in this paper.
基金the Science and Technology Major Project of China(No.2019ZX04020001-004,2017ZX04007001)。
文摘In the manufacturing of thin wall components for aerospace industry,apart from the side wall contour error,the Remaining Bottom Thickness Error(RBTE)for the thin-wall pocket component(e.g.rocket shell)is of the same importance but overlooked in current research.If the RBTE reduces by 30%,the weight reduction of the entire component will reach up to tens of kilograms while improving the dynamic balance performance of the large component.Current RBTE control requires the off-process measurement of limited discrete points on the component bottom to provide the reference value for compensation.This leads to incompleteness in the remaining bottom thickness control and redundant measurement in manufacturing.In this paper,the framework of data-driven physics based model is proposed and developed for the real-time prediction of critical quality for large components,which enables accurate prediction and compensation of RBTE value for the thin wall components.The physics based model considers the primary root cause,in terms of tool deflection and clamping stiffness induced Axial Material Removal Thickness(AMRT)variation,for the RBTE formation.And to incorporate the dynamic and inherent coupling of the complicated manufacturing system,the multi-feature fusion and machine learning algorithm,i.e.kernel Principal Component Analysis(kPCA)and kernel Support Vector Regression(kSVR),are incorporated with the physics based model.Therefore,the proposed data-driven physics based model combines both process mechanism and the system disturbance to achieve better prediction accuracy.The final verification experiment is implemented to validate the effectiveness of the proposed method for dimensional accuracy prediction in pocket milling,and the prediction accuracy of AMRT achieves 0.014 mm and 0.019 mm for straight and corner milling,respectively.
基金study was based on the international project "Development of a Hillslope-scale Sediment Transport Model" bilaterally supported by the National Research Foundation of Korea (NRF-2007-614-D00036, NRF-2008-614-D00018, NRF-2011013-D00124 and NRF-2013R1A1A4A01007676) and TUBITAK (The Scientific and Technological Research Council of Turkey 108Y250)supported in part by a grant (13CRTI-B052117-01) from the Regional Technology Innovation Program and another grant from the Advanced Water Management Research Program funded by the Ministry of Land, Infrastructure and Transport of the Korean Government, a 2011–2012 grant from Geum-River Environment Research Center, National Institute of Environmental Research, Korea, and a Korea University Grant
文摘Climate change can escalate rainfall intensity and cause further increase in sediment transport in arid lands which in turn can adversely affect water quality. Hence, there is a strong need to predict the fate of sediments in order to provide measures for sound erosion control and water quality management. The presence of micro- topography on hillslopes influences processes of runoff generation and erosion, which should be taken into account to achieve more accurate modelling results. This study presents a physically based mathematical model for erosion and sediment transport coupled to one-dimensional overland flow equations that simulate rainfall-runoff generation on the rill and interrill areas of a bare hillslope. Modelling effort at such a fine resolution considering the flow con- nection between Jnterrill areas and rills is rarely verified. The developed model was applied on a set of data gath- ered from an experimental setup where a 650 cm×136 cm erosion flume was pre-formed with a longitudinal rill and interrJll having a plane geometry and was equipped with a rainfall simulator that reproduces natural rainfall characteristics. The flume can be given both longitudinal and lateral slope directions. For calibration and validation, the model was applied on the experimental results obtained from the setup of the flume having 5% lateral and 10% longitudinal slope directions under rainfall intensities of 105 and 45 mm/h, respectively. Calibration showed that the model was able to produce good results based on the R2 (0.84) and NSE (0.80) values. The model performance was further tested through validation which also produced good statistics (R2=0.83, NSE=0.72). Results in terms of the sedigraphs, cumulative mass curves and performance statistics suggest that the model can be a useful and an important step towards verifying and improving mathematical models of erosion and sediment transport.
基金supported by the National Natural Science Foundation of China(6067406960574056).
文摘To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.
基金Supported by the National Natural Science Foundation of China (20776118), Science & Technology Bureau of Xi'an [CXY09019 (1)], Innovation Foundation for Graduated Student of Northwest University (08YJC21), Shaanxi Research Center of Engineering Technology for Clean Coal Conversion (2008ZDGC-13).
文摘The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of transfer process in nonideal multicomponent distillation column,a method was developed with equilibrium stage models(EQ)and non-equilibrium model(NEQ)incorporated with Maxwell-Stefan diffusion equations in the framework of AspenONE simulator.Dortmund Modified UNIFAC(UNIFAC-DMD)thermodynamic model was employed to estimate activity coefficients.In addition,to understand the reason for the diffusion against driving force and the different results by EQ and NEQ models,explicit investigations were made on diffusion coefficients, component Murphree efficiency and mass transfer coefficients.The results provide valuable information for basic design and applications associated with extractive distillation.
基金Under the auspices of National Natural Science Foundation of China(No.41371008,41101119)New Start Academic Research Projects of Beijing Union University(No.ZK201201)
文摘The key to studying urban sustainable development depends on quantifying stores, efficiencies of urban metabolisms and capturing urban metabolisms′ mechanisms. This paper builds up the metabolic emergy account and quantifies some important concepts of emergy stores. Emphasis is placed on the urban metabolic model based on the slack based model(SBM) method to measure urban metabolic efficiencies. Urban metabolic mechanisms are discussed by using the regression method. By integrating these models, this paper analyzes the urban metabolic development in Beijing from 2001 to 2010. We conclude that the metabolic emergy stores of Beijing increased significantly from 2001 to 2010, with the emergy imported accounting for most of the increase. The metabolic efficiencies in Beijing have improved since the 2008 Olympic Games. The population, economic growth, industrial structures, and environmental governance positively affect the overall urban metabolism, while the land expansion, urbanization and environmentally technical levels hinder the improving of urban metabolic efficiencies. The SBM metabolic method and the regression model based on the emergy analysis provide insights into the urban metabolic efficiencies and the mechanism. They can promote to integrate such concepts into their sustainability analyses and policy decisions.
文摘A model based method which recruited the extended Kalman filter (EKF) to estimate the full state of charge (SOC) of Li-ion battery was proposed. The underlying dynamic behavior of the cell pack was described based on an equivalent circuit comprising of two capacitors and three resistors. Measurements in two tests were applied to compare the SOC estimated by model based EKF estimation with the SOC calculated by coulomb counting. Results have shown that the proposed method is able to perform a good estimation of the SOC of battery packs. Moreover, a corresponding battery management systems (BMS) including software and hardware based on this method was designed.
文摘This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.
基金supported in part by the National Natural Science Foundation of China under Grant No.60972010the Beijing Natural Science Foundation under Grant No.4102047+1 种基金the Major Program for Research on Philosophy&Humanity Social Sciences of the Ministry of Education of China under Grant No.08WL1101the Service Business of Scientists and Engineers Project under Grant No.2009GJA00048
文摘This paper is devoted to analyze and model user reading and replying activities in a bulletin board system(BBS)social network.By analyzing the data set from a famous Chinese BBS social network,we show how some user activities distribute,and reveal several important features that might characterize user dynamics.We propose a method to model user activities in the BBS social network.The model could reproduce power-law and non-power-law distributions of user activities at the same time.Our results show that user reading and replying activities could be simulated through simple agent-based models.Specifically,manners of how the BBS server interacts with Internet users in the Web 2.0 application,how users organize their reading lists,and how user behavioral trait distributes are the important factors in the formation of activity patterns.
文摘This paper reviews a class of important models of granular computing which are induced by equivalence relations,or by general binary relations,or by neighborhood systems,and propose a class of models of granular computing which are induced by coverings of the given universe.
基金Supported by the National Key R&D Program of China under Grant No 2016YFB0400104
文摘Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials.
基金supported by the National Natural Science Foundation of China (No.61871350)the Zhejiang Science and Technology Plan Project (No.2019C011123)the Zhejiang Province Basic Public Welfare Research Project (No.LGG19F030011)。
文摘The current life-prediction models for lithium-ion batteries have several problems, such as the construction of complex feature structures, a high number of feature dimensions, and inaccurate prediction results. To overcome these problems, this paper proposes a deep-learning model combining an autoencoder network and a long short-term memory network. First, this model applies the characteristics of the autoencoder to reduce the dimensionality of the high-dimensional features extracted from the battery data set and realize the fusion of complex time-domain features, which overcomes the problems of redundant model information and low computational efficiency. This model then uses a long short-term memory network that is sensitive to time-series data to solve the long-path dependence problem in the prediction of battery life. Lastly, the attention mechanism is used to give greater weight to features that have a greater impact on the target value, which enhances the learning effect of the model on the long input sequence. To verify the efficacy of the proposed model, this paper uses NASA's lithium-ion battery cycle life data set.
基金National Natural Science Foundation of China(No.61374044)Shanghai Science Technology Commission,China(Nos.15510722100,16111106300)
文摘Special input signals identification method based on the auxiliary model based multi-innovation stochastic gradient algorithm for Hammerstein output-error system was proposed.The special input signals were used to realize the identification and separation of the Hammerstein model.As a result,the identification of the dynamic linear part can be separated from the static nonlinear elements without any redundant adjustable parameters.The auxiliary model based multi-innovation stochastic gradient algorithm was applied to identifying the serial link parameters of the Hammerstein model.The auxiliary model based multi-innovation stochastic gradient algorithm can avoid the influence of noise and improve the identification accuracy by changing the innovation length.The simulation results show the efficiency of the proposed method.
基金The work was supported by the National Natural Science Foundations of China(No.31971653).
文摘Tree mortality models play an important role in predicting tree growth and yield,but existing mortality models for Larix gmelinii subsp.principis-rupprechtii,an important species used for regeneration and afforestation in northern China,have overlooked potential regional influences on tree mortality.This study used data acquired from 102 temporary sample plots(TSPs)in natural stands of Prince Rupprecht larch in the state-owned Guandi Mountain Forest(n=67)and state-owned Boqiang Forest(n=35)in northern China.To model stand-level tree mortality,we compared seven model forms of county data.Three continuous(dominant height,plot mean diameter,and basal area per hectare)and one dummy variable with two levels(region)were used as fixed effects variables.Tree morality variations caused by forest blocks were accounted for using forest blocks as a random effect in selected models.Results showed that tree mortality significantly positively correlated with stand basal area and dominant height,but negatively correlated with stand mean diameter.Incorporating both the dummy variables and random effects into the tree mortality models significantly increased the fitting improvements,and Hurdle Poisson mixed-effects model showed the most attractive fit statistics(largest R^(2)and smallest RMSE)when employing leave-one-out cross-validation.These mixed-effects dummy variable models will be useful for accurately predicting Larix tree mortality in different regions.