Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied ...Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied to bionic robotic actuators, artificial muscles, as well as dynamic sensors. However, IPMC has the major drawback of low generative blocking force. In this paper, in order to enhance the blocking force, the Nation membranes with thickness of 0.22 mm, 0.32 mm, 0.42 mm, 0.64 mm and 0.8 mm were prepared by casting from liquid solution. By employing these Nation membranes, IPMCs with varying thickness were fabricated by electroless plating. The elastic modulus of the casted Nation membranes were obtained by a nano-indenter, and the current, the displacement and the blocking force were respectively measured by the apparatus for actuation test. Finally, the effects of the thickness on the performance of IPMC were analyzed with an electromechanical model. Experimental study and theory analysis indicate that as the thickness increases, the elastic modulus of Nation membrane and the blocking force of IPMC increase, however, the current and the displacement decrease.展开更多
Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA ...Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA algorithm,the PCA and the Bagging PLS are combined.In this method,multiple PLS models are trained on sub-training sets,derived from the training set using the random sampling with replacement approach.The regression coefficients of all the sub-PLS models are fused in a joint regression coefficient matrix.The final projection direction is then estimated by performing the PCA on the joint regression coefficient matrix.Subsequently,the proposed PMA method is compared with other traditional dimension reduction methods,such as PLS,Bagging PLS,Linear discriminant analysis(LDA)and PLS-LDA.Experimental results on six public datasets demonstrate that our proposed method consistently outperforms other approaches in terms of classification performance and exhibits greater stability.Additionally,it is employed in the application of financial statement fraud identification.PMA and other five algorithms are utilized to financial statement fraud which concerned by the academic community,and the results indicate that the classification of PMA surpassed that of the other methods.展开更多
A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation...A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation response to global change. The process of seed disposal is influenced by wind, which plays a crucial role in determining the distance and probability of seed dispersal. Existing models of seed dispersal consider wind direction but fail to incorporate wind intensity. In this paper, a novel seed disposal model was proposed in this paper, incorporating wind intensity based on relevant references. According to various climatic conditions, including temperate, arid, and tropical regions, three specific regions were selected to establish a wind dispersal model that accurately reflects the density function distribution of dispersal distance. Additionally, dandelions growth is influenced by a multitude of factors, encompassing temperature, humidity, climate, and various environmental variables that necessitate meticulous consideration. Based on Factor Analysis model, which completely considers temperature, precipitation, solar radiation, wind, and land carrying capacity, a conclusion is presented, indicating that the growth of seeds is primarily influenced by plant attributes and climate conditions, with the former exerting a relatively stronger impact. Subsequently, the remaining two plants were chosen based on seed weight, yielding consistent conclusion.展开更多
In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,...In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,as the core of internal corporate management,plays a critical role in optimizing resource allocation,long-term planning,and formulating market competition strategies.This paper explores the application of Artificial Intelligence(AI)in management accounting,aiming to analyze the current state of AI in management accounting,examine its role in supporting external strategic decisions,and develop an AI-driven strategic forecasting and analysis model.The findings indicate that AI technology,through its advanced data processing and analytical capabilities,significantly enhances the efficiency and accuracy of management accounting,optimizes internal resource allocation,and strengthens enterprises’market competitiveness.展开更多
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
This study investigated the degradation mechanism of the surrounding rock of a heavy-haul railway under a water-rich condition,based on the construction of the Taihangshan tunnel for the Wari Railway,a heavy-haul rail...This study investigated the degradation mechanism of the surrounding rock of a heavy-haul railway under a water-rich condition,based on the construction of the Taihangshan tunnel for the Wari Railway,a heavy-haul railway that used standard construction practices for axle loads of 30 t.Remote monitoring demonstrated that the coupling effect between the dynamic load of a heavy-haul train and the groundwater leads to the deterioration and hollowing of the surrounding rock.This study clarified the void evolution process and deterioration mechanism of the basement rock under the comprehensive influence of the groundwater–train dynamic load using a refined discrete element numerical simulation.The results revealed that the groundwater was the primary influencing factor in the deterioration of the lower part of the heavy-haul railway tunnel.Rock particles were gradually lost under the effects of long-term erosion due to groundwater and heavy-haul trains,which inevitably damaged the basement rock after the construction was completed.Based on this observation,the critical conditions for the deterioration and attenuation law of the physical parameters of the basement rock were obtained.The results of this study can provide ideas and serve as a reference for the forecasting and disaster treatment of basement rock damage in heavy-haul railway tunnels.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula...This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.展开更多
Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop hea...Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.展开更多
Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design...Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.展开更多
A Fisher discriminant analysis (FDA) model for the prediction of classification of rockburst in deep-buried long tunnel was established based on the Fisher discriminant theory and the actual characteristics of the p...A Fisher discriminant analysis (FDA) model for the prediction of classification of rockburst in deep-buried long tunnel was established based on the Fisher discriminant theory and the actual characteristics of the project. First, the major factors of rockburst, such as the maximum tangential stress of the cavern wall σθ, uniaxial compressive strength σc, uniaxial tensile strength or, and the elastic energy index of rock Wet, were taken into account in the analysis. Three factors, Stress coefficient σθ/σc, rock brittleness coefficient σc/σt, and elastic energy index Wet, were defined as the criterion indices for rockburst prediction in the proposed model. After training and testing of 12 sets of measured data, the discriminant functions of FDA were solved, and the ratio of misdiscrimina- tion is zero. Moreover, the proposed model was used to predict rockbursts of Qinling tunnel along Xi'an-Ankang railway. The results show that three forecast results are identical with the actual situation. Therefore, the prediction accuracy of the FDA model is acceptable.展开更多
The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we ...The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we can evaluate the numerical model and dynamic degree model for calculating land-use change rates. Furthermore, the paper raises the possibility of revising the calculating analysis model of spatial information in order to predicate more precisely the dynamic changing level of all types of land uses. In the most concrete terms, the model is used mainly to understand changed area and changed rates (increasing or decreasing) of different land types from microcosmic angle and establish spatial distribution and spatio-temporal principles of the changing urban lands. And we will try to find out why the situation can take place by combining social and economic situations. The result indicates the calculating analysis model of spatial information can derive more accurate procedure of spatial transference and increase of all kinds of land from microcosmic angle. By this model and technology we can conduct the research of land-use spatio-temporal structure evolution more systematically and more deeply, and can obtain a satisfactory result. The result will benefit the rational planning and management of urban land use of developed coastal areas in China in the future.展开更多
Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when ...Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.展开更多
Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity ana...Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.展开更多
To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Sh...To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.展开更多
In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign met...In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.展开更多
This manuscript presents a stochastic model updating method, taking both uncertainties in models and variability in testing into account. The updated finite element(FE) models obtained through the proposed technique...This manuscript presents a stochastic model updating method, taking both uncertainties in models and variability in testing into account. The updated finite element(FE) models obtained through the proposed technique can aid in the analysis and design of structural systems. The authors developed a stochastic model updating method integrating distance discrimination analysis(DDA) and advanced Monte Carlo(MC) technique to(1) enable more efficient MC by using a response surface model,(2) calibrate parameters with an iterative test-analysis correlation based upon DDA, and(3) utilize and compare different distance functions as correlation metrics. Using DDA, the influence of distance functions on model updating results is analyzed. The proposed stochastic method makes it possible to obtain a precise model updating outcome with acceptable calculation cost. The stochastic method is demonstrated on a helicopter case study updated using both Euclidian and Mahalanobis distance metrics. It is observed that the selected distance function influences the iterative calibration process and thus, the calibration outcome, indicating that an integration of different metrics might yield improved results.展开更多
The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict dete...The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict detection.We research the global conflict detection algorithm in this paper.We presented a semantic model that captures more complete classifications of the policy using knowledge concept in rough set.Based on this model,we presented the global conflict formal model,and represent it with OBDD(Ordered Binary Decision Diagram).Then we developed GFPCDA(Global Firewall Policy Conflict Detection Algorithm) algorithm to detect global conflict.In experiment,we evaluated the usability of our semantic model by eliminating the false positives and false negatives caused by incomplete policy semantic model,of a classical algorithm.We compared this algorithm with GFPCDA algorithm.The results show that GFPCDA detects conflicts more precisely and independently,and has better performance.展开更多
The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,t...The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,the structural uncertain parameters were described as interval variables.The theoretical analysis model was developed by starting from the 2-D plane and 3-D space.In order to avoid the loss of probable failure points,the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis.The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function.Furthermore,the low-dimensional analytical scheme was extended to the high-dimensional case.Using the proposed approach,it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly.A number of equations used for calculating the extreme points and root points were also evaluated.This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field.Finally,two kinds of examples were presented and compared with the existing computation.The good agreements show that the proposed theoretical analysis approach in the paper is correct.The efforts were conducted to improve the optimization method,to indicate the search direction and path,and to avoid only searching the local optimal solution which would result in missed probable failure points.展开更多
This paper proposes the analysis model of sports human body based on computer vision tracking technology. Visual target tracking is an important research field of the computer vision, motion trajectory and it can prov...This paper proposes the analysis model of sports human body based on computer vision tracking technology. Visual target tracking is an important research field of the computer vision, motion trajectory and it can provide not only the goal, to provide the initial data movement analysis, scene understanding, behavior or the event detection in intelligent surveillance, human-computer interaction, robot visual navigation and motion recognition based on field has a broad application prospect. For this reason, it is possible to consider the use of a large number of unlabeled samples to assist the training classifier to improve its performance. This type of machine learning method using both labeled and that unlabeled samples is called the semi-supervised learning. This paper proposes the novel idea of the related research topics to propose the new perspective of the model that will be later give us the novel idea of making it efficient for further development of sport science.展开更多
基金Acknowledgement The authors thank the financial support from the National Natural Science Foundation of China (Grant No. 50705043, 60535020 and 60910007).
文摘Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied to bionic robotic actuators, artificial muscles, as well as dynamic sensors. However, IPMC has the major drawback of low generative blocking force. In this paper, in order to enhance the blocking force, the Nation membranes with thickness of 0.22 mm, 0.32 mm, 0.42 mm, 0.64 mm and 0.8 mm were prepared by casting from liquid solution. By employing these Nation membranes, IPMCs with varying thickness were fabricated by electroless plating. The elastic modulus of the casted Nation membranes were obtained by a nano-indenter, and the current, the displacement and the blocking force were respectively measured by the apparatus for actuation test. Finally, the effects of the thickness on the performance of IPMC were analyzed with an electromechanical model. Experimental study and theory analysis indicate that as the thickness increases, the elastic modulus of Nation membrane and the blocking force of IPMC increase, however, the current and the displacement decrease.
基金Supported by the Beijing Municipal Social Science Foundation(SZ202210005004)Beijing Natural Science Foundation(9242004)。
文摘Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA algorithm,the PCA and the Bagging PLS are combined.In this method,multiple PLS models are trained on sub-training sets,derived from the training set using the random sampling with replacement approach.The regression coefficients of all the sub-PLS models are fused in a joint regression coefficient matrix.The final projection direction is then estimated by performing the PCA on the joint regression coefficient matrix.Subsequently,the proposed PMA method is compared with other traditional dimension reduction methods,such as PLS,Bagging PLS,Linear discriminant analysis(LDA)and PLS-LDA.Experimental results on six public datasets demonstrate that our proposed method consistently outperforms other approaches in terms of classification performance and exhibits greater stability.Additionally,it is employed in the application of financial statement fraud identification.PMA and other five algorithms are utilized to financial statement fraud which concerned by the academic community,and the results indicate that the classification of PMA surpassed that of the other methods.
文摘A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation response to global change. The process of seed disposal is influenced by wind, which plays a crucial role in determining the distance and probability of seed dispersal. Existing models of seed dispersal consider wind direction but fail to incorporate wind intensity. In this paper, a novel seed disposal model was proposed in this paper, incorporating wind intensity based on relevant references. According to various climatic conditions, including temperate, arid, and tropical regions, three specific regions were selected to establish a wind dispersal model that accurately reflects the density function distribution of dispersal distance. Additionally, dandelions growth is influenced by a multitude of factors, encompassing temperature, humidity, climate, and various environmental variables that necessitate meticulous consideration. Based on Factor Analysis model, which completely considers temperature, precipitation, solar radiation, wind, and land carrying capacity, a conclusion is presented, indicating that the growth of seeds is primarily influenced by plant attributes and climate conditions, with the former exerting a relatively stronger impact. Subsequently, the remaining two plants were chosen based on seed weight, yielding consistent conclusion.
文摘In today’s rapidly evolving business environment,enterprises face unprecedented competitive pressures and complexities,necessitating efficient and precise strategic decision-making capabilities.Management accounting,as the core of internal corporate management,plays a critical role in optimizing resource allocation,long-term planning,and formulating market competition strategies.This paper explores the application of Artificial Intelligence(AI)in management accounting,aiming to analyze the current state of AI in management accounting,examine its role in supporting external strategic decisions,and develop an AI-driven strategic forecasting and analysis model.The findings indicate that AI technology,through its advanced data processing and analytical capabilities,significantly enhances the efficiency and accuracy of management accounting,optimizes internal resource allocation,and strengthens enterprises’market competitiveness.
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
基金the National Natural Science Foundation of China(5108098,51508475)The Chongqing Education Commission science and technology research project(KJQN201901509)Sichuan University Key Laboratory Fundation of Bridge Nondestructive Testing and Engineering Calculation(2018QYJ06).
文摘This study investigated the degradation mechanism of the surrounding rock of a heavy-haul railway under a water-rich condition,based on the construction of the Taihangshan tunnel for the Wari Railway,a heavy-haul railway that used standard construction practices for axle loads of 30 t.Remote monitoring demonstrated that the coupling effect between the dynamic load of a heavy-haul train and the groundwater leads to the deterioration and hollowing of the surrounding rock.This study clarified the void evolution process and deterioration mechanism of the basement rock under the comprehensive influence of the groundwater–train dynamic load using a refined discrete element numerical simulation.The results revealed that the groundwater was the primary influencing factor in the deterioration of the lower part of the heavy-haul railway tunnel.Rock particles were gradually lost under the effects of long-term erosion due to groundwater and heavy-haul trains,which inevitably damaged the basement rock after the construction was completed.Based on this observation,the critical conditions for the deterioration and attenuation law of the physical parameters of the basement rock were obtained.The results of this study can provide ideas and serve as a reference for the forecasting and disaster treatment of basement rock damage in heavy-haul railway tunnels.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
基金supported by the Korea Meteorological Administration Research and Development Program “Developing Application Technology for Atmospheric Research Aircraft” (Grant No. KMA2018-00222)
文摘This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future.
文摘Thermal performance of a loop heat pipe with two evaporators and two condensers was examined using a lumped network model analysis. Thermosyphon-type vertical loop heat pipe and capillary-pump-type horizontal loop heat pipe were calculated by examining the change of heating rate of two evaporators. Calculation results showed that the vapor and liquid flow rates in the loop heat pipe and the thermal conductance of the heat pipe changed significantly depending on the distribution ratio of the heating rate of the multiple evaporators. The thermal performance of the vertical loop heat pipe with two evaporators was also examined and experimental results of flow direction and thermal conductance of the heat pipe agreed with the analytical results. The lumped network model analysis is therefore considered accurate and preferable for the practical design of a loop heat pipe with multiple evaporators.
基金the National Natural Science Foundation of China(No.51175502)
文摘Prognostics and health management (PHM) significantly improves system availability and reliability, and reduces the cost of system operations. Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability. Testability modeling and analysis are the foundation of DFT. This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms. At the component level, the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes, evolution mechanisms, effects and criticality analysis (FMEMECA), and then the failure-symptom dependency can be generated. At the system level, the dynamic attributes of UUTs are assigned by using the bond graph methodology, and then the symptom-test dependency can be obtained by means of the functional flow method. Based on the failure-symptom and symptom-test dependencies, testability analysis for PHM systems can be realized. A shunt motor is used to verify the application of the approach proposed in this paper. Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well, and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.
基金Supported by the National 11th Five-Year Science and Technology Supporting Plan of China(2006BAB02A02)Central South University Innovation funded projects (2009ssxt230, 2009ssxt234)
文摘A Fisher discriminant analysis (FDA) model for the prediction of classification of rockburst in deep-buried long tunnel was established based on the Fisher discriminant theory and the actual characteristics of the project. First, the major factors of rockburst, such as the maximum tangential stress of the cavern wall σθ, uniaxial compressive strength σc, uniaxial tensile strength or, and the elastic energy index of rock Wet, were taken into account in the analysis. Three factors, Stress coefficient σθ/σc, rock brittleness coefficient σc/σt, and elastic energy index Wet, were defined as the criterion indices for rockburst prediction in the proposed model. After training and testing of 12 sets of measured data, the discriminant functions of FDA were solved, and the ratio of misdiscrimina- tion is zero. Moreover, the proposed model was used to predict rockbursts of Qinling tunnel along Xi'an-Ankang railway. The results show that three forecast results are identical with the actual situation. Therefore, the prediction accuracy of the FDA model is acceptable.
基金State Key Laboratory of Information Engineering in Surveying Mapping and Remote SensingNo.WKL((020)0302)
文摘The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we can evaluate the numerical model and dynamic degree model for calculating land-use change rates. Furthermore, the paper raises the possibility of revising the calculating analysis model of spatial information in order to predicate more precisely the dynamic changing level of all types of land uses. In the most concrete terms, the model is used mainly to understand changed area and changed rates (increasing or decreasing) of different land types from microcosmic angle and establish spatial distribution and spatio-temporal principles of the changing urban lands. And we will try to find out why the situation can take place by combining social and economic situations. The result indicates the calculating analysis model of spatial information can derive more accurate procedure of spatial transference and increase of all kinds of land from microcosmic angle. By this model and technology we can conduct the research of land-use spatio-temporal structure evolution more systematically and more deeply, and can obtain a satisfactory result. The result will benefit the rational planning and management of urban land use of developed coastal areas in China in the future.
基金supported by the National Nature Science Foundation of China(Grant No.71401052)the National Social Science Foundation of China(Grant No.17BGL156)the Key Project of the National Social Science Foundation of China(Grant No.14AZD024)
文摘Identification of security risk factors for small reservoirs is the basis for implementation of early warning systems.The manner of identification of the factors for small reservoirs is of practical significance when data are incomplete.The existing grey relational models have some disadvantages in measuring the correlation between categorical data sequences.To this end,this paper introduces a new grey relational model to analyze heterogeneous data.In this study,a set of security risk factors for small reservoirs was first constructed based on theoretical analysis,and heterogeneous data of these factors were recorded as sequences.The sequences were regarded as random variables,and the information entropy and conditional entropy between sequences were measured to analyze the relational degree between risk factors.Then,a new grey relational analysis model for heterogeneous data was constructed,and a comprehensive security risk factor identification method was developed.A case study of small reservoirs in Guangxi Zhuang Autonomous Region in China shows that the model constructed in this study is applicable to security risk factor identification for small reservoirs with heterogeneous and sparse data.
基金supported by the National Natural Science Foundation of China (Grant No. 41271003)the National Basic Research Program of China (Grants No. 2010CB428403 and 2010CB951103)
文摘Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1) a screening method (Morris) for qualitative ranking of parameters, and (2) a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol). First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM) were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
基金Financial support for this work is provided by the Shunde Environment ProtectionTransportation and Urban Administration Bureau(no.0851-1361FS02CL51)+5 种基金the Guangdong Provincial Science and Technology Plan Projects(no.2014A050503019)Guangzhou Environmental Protection Bureau(no.x2hjB2150020)supported by the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complexthe project of Atmospheric Haze Collaboration Control Technology Design(no.XDB05030400)from Chinese Academy of Sciencesthe Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(U1501501)(the second phase)the Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal(no.b2152120)
文摘To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.
基金Projects(50875090,50905063) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z111) supported by the National High Technology Research and Development Program of China+2 种基金Project(20090460769) supported by China Postdoctoral Science FoundationProject(2011ZM0070) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(S2011010001155) supported by the Natural Science Foundation of Guangdong Province,China
文摘In order to optimize the embedded system implementation for Ethernet-based computer numerical control (CNC) system, it is very necessary to establish the performance analysis model and further adopt the codesign method from the control, communication and computing perspectives. On the basis of analyzing real-time Ethemet, system architecture, time characteristic parameters of control-loop ere, a performance analysis model for real-time Ethemet-based CNC system was proposed, which is able to include the timing effects caused by the implementation platform in the simulation. The key for establishing the model is accomplished by designing the error analysis module and the controller nodes. Under the restraint of CPU resource and communication bandwidth, the experiment with a case study was conducted, and the results show that if the deadline miss ratio of data packets is 0.2%, then the percentage error is 1.105%. The proposed model can be used at several stages of CNC system development.
基金supported by the National Natural Science Foundation of China (No. 10972019)the Innovation Foundation of BUAA for Ph.D. Graduates of China, and the China Scholarship Council
文摘This manuscript presents a stochastic model updating method, taking both uncertainties in models and variability in testing into account. The updated finite element(FE) models obtained through the proposed technique can aid in the analysis and design of structural systems. The authors developed a stochastic model updating method integrating distance discrimination analysis(DDA) and advanced Monte Carlo(MC) technique to(1) enable more efficient MC by using a response surface model,(2) calibrate parameters with an iterative test-analysis correlation based upon DDA, and(3) utilize and compare different distance functions as correlation metrics. Using DDA, the influence of distance functions on model updating results is analyzed. The proposed stochastic method makes it possible to obtain a precise model updating outcome with acceptable calculation cost. The stochastic method is demonstrated on a helicopter case study updated using both Euclidian and Mahalanobis distance metrics. It is observed that the selected distance function influences the iterative calibration process and thus, the calibration outcome, indicating that an integration of different metrics might yield improved results.
基金supported by the National Nature Science Foundation of China under Grant No.61170295 the Project of National ministry under Grant No.A2120110006+2 种基金 the Co-Funding Project of Beijing Municipal Education Commission under Grant No.JD100060630 the Beijing Education Committee General Program under Grant No. KM201211232010 the National Nature Science Foundation of China under Grant NO. 61370065
文摘The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict detection.We research the global conflict detection algorithm in this paper.We presented a semantic model that captures more complete classifications of the policy using knowledge concept in rough set.Based on this model,we presented the global conflict formal model,and represent it with OBDD(Ordered Binary Decision Diagram).Then we developed GFPCDA(Global Firewall Policy Conflict Detection Algorithm) algorithm to detect global conflict.In experiment,we evaluated the usability of our semantic model by eliminating the false positives and false negatives caused by incomplete policy semantic model,of a classical algorithm.We compared this algorithm with GFPCDA algorithm.The results show that GFPCDA detects conflicts more precisely and independently,and has better performance.
基金the National Natural Science Foundation of China (51408444, 51708428)
文摘The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,the structural uncertain parameters were described as interval variables.The theoretical analysis model was developed by starting from the 2-D plane and 3-D space.In order to avoid the loss of probable failure points,the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis.The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function.Furthermore,the low-dimensional analytical scheme was extended to the high-dimensional case.Using the proposed approach,it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly.A number of equations used for calculating the extreme points and root points were also evaluated.This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field.Finally,two kinds of examples were presented and compared with the existing computation.The good agreements show that the proposed theoretical analysis approach in the paper is correct.The efforts were conducted to improve the optimization method,to indicate the search direction and path,and to avoid only searching the local optimal solution which would result in missed probable failure points.
文摘This paper proposes the analysis model of sports human body based on computer vision tracking technology. Visual target tracking is an important research field of the computer vision, motion trajectory and it can provide not only the goal, to provide the initial data movement analysis, scene understanding, behavior or the event detection in intelligent surveillance, human-computer interaction, robot visual navigation and motion recognition based on field has a broad application prospect. For this reason, it is possible to consider the use of a large number of unlabeled samples to assist the training classifier to improve its performance. This type of machine learning method using both labeled and that unlabeled samples is called the semi-supervised learning. This paper proposes the novel idea of the related research topics to propose the new perspective of the model that will be later give us the novel idea of making it efficient for further development of sport science.