Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(...Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(TPFs).Methods YOLOv8n-cls was used to construct a baseline model on the data of 3781 patients from the Orthopedic Trauma Center of Wuhan Union Hospital.Additionally,a segmentation-guided classification approach was proposed.To enhance the dataset,a diffusion model was further demonstrated for data augmentation.Results The novel method that integrated the segmentation-guided classification and diffusion model augmentation sig-nificantly improved the accuracy and robustness of fracture classification.The average accuracy of classification for TPFs rose from 0.844 to 0.896.The comprehensive performance of the dual-stream model was also significantly enhanced after many rounds of training,with both the macro-area under the curve(AUC)and the micro-AUC increasing from 0.94 to 0.97.By utilizing diffusion model augmentation and segmentation map integration,the model demonstrated superior efficacy in identifying SchatzkerⅠ,achieving an accuracy of 0.880.It yielded an accuracy of 0.898 for SchatzkerⅡandⅢand 0.913 for SchatzkerⅣ;for SchatzkerⅤandⅥ,the accuracy was 0.887;and for intercondylar ridge fracture,the accuracy was 0.923.Conclusion The dual-stream attention-based classification network,which has been verified by many experiments,exhibited great potential in predicting the classification of TPFs.This method facilitates automatic TPF assessment and may assist surgeons in the rapid formulation of surgical plans.展开更多
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ...This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.展开更多
In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach th...In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development.展开更多
Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the eva...Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.展开更多
The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculat...The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.展开更多
The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across divers...The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across diverse geological settings.Large-scale models(LSMs),with vast parameter spaces and extensive training datasets,excel in solving complex visual problems.This study explores the potential of using one such LSM,Segment anything model(SAM),to identify facet-type discontinuities across several outcrops via interactive prompting.The findings demonstrate that SAM effectively segments two-dimensional(2D)discontinuities,with its generalization capability validated on a dataset of 2426 identified discontinuities across 170 outcrops.The model achieves 0.78 mean IoU and 0.86 average precision using 11-point prompts.To extend to three dimensions(3D),a framework integrating SAM with Structure-from-Motion(SfM)was proposed.By utilizing the inherent but often overlooked relationship between image pixels and point clouds in SfM,the identification process was simplified and generalized across photogrammetric devices.Benchmark studies showed that the framework achieved 0.91 average precision,identifying 87 discontinuities in Dataset-3D.The results confirm its high precision and efficiency,making it a valuable tool for data annotation.The proposed method offers a practical solution for geological investigations.展开更多
The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of ...The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of mechanical behaviors.However,constitutive model parameters cannot be evaluated accurately with a limited amount of test data,resulting in uncertainty in the prediction of stress-strain curves.This paper proposes a Bayesian analysis framework to address this issue.It combines the Bayesian updating with the structural reliability and adaptive conditional sampling methods to assess the equation parameter of constitutive models.Based on the triaxial and ring shear tests on shear zone soils from the Huangtupo landslide,a statistical damage constitutive model and a critical state hypoplastic constitutive model were used to demonstrate the effectiveness of the proposed framework.Moreover,the parameter uncertainty effects of the damage constitutive model on landslide stability were investigated.Results show that reasonable assessments of the constitutive model parameter can be well realized.The variability of stress-strain curves is strongly related to the model prediction performance.The estimation uncertainty of constitutive model parameters should not be ignored for the landslide stability calculation.Our study provides a reference for uncertainty analysis and parameter assessment of the constitutive model.展开更多
Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming year...Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming years may be useful for national planning. To predict Bangladesh’s future population, this study compares the estimated populations of two popular population models, the Malthusian and the logistic population models, with the country’s census population published by BBS. We also tried to find out which model gives a better approximation for forecasting the past, present, and future population between these two models.展开更多
Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit mode...Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit model coupled with a global model.This study focuses on the effects of singlet metastable molecule O_(2)(b^(1)∑_(8)^(+)),highly excited Herzberg states O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-)),and the negative ion O_(2)^(-),which are usually neglected in simulation studies.Specifically,their impact on particle densities,electronegativity,electron temperature,voltage drop across the sheath,and absorbed power in the discharge is analyzed.The results indicate that O_(2)(b^(1)∑_(8)^(+))and O_(2)^(-)exhibit relatively high densities in argon-oxygen discharges.While O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-))play a critical role in O_(2)b1S+g production,especially at higher pressure.The inclusion of these particles reduces the electronegativity,electron temperature,and key species densities,especially the O^(-)and O^(*)densities.Moreover,the sheath voltage drop,as well as the inductance and resistance of the plasma bulk are enhanced,while the sheath dissipation power and total absorbed power decrease slightly.With the increasing pressure,the influence of these particles on the discharge properties becomes more significant.The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr(1 Torr=1.33322×10^(2)Pa),offering insights into essential and non-essential reactions for future low-pressure O_(2)and Ar/O_(2)CCP discharge modeling.展开更多
The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on unders...The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering.展开更多
A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the...A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the structural coefficient of the effective electric field.Furthermore,the optimization of the Skanavi model is demonstrated and the ferroelectric phase transition of BaTiO_(3)crystals is revealed by calculating the optical and static permittivities of BaTiO_(3),CaTiO_(3),and SrTiO_(3)crystals and the structure coefficients of the effective electric field of BT crystals after Ti4+displacement.This research compensates for the deficiencies of the traditional Skanavi model and refines the theoretical framework for analyzing dielectric properties in high permittivity materials.展开更多
With the rapid development of generative artificial intelligence technologies,represented by large language models,university-level computer science education is undergoing a critical transition-from knowledge-based i...With the rapid development of generative artificial intelligence technologies,represented by large language models,university-level computer science education is undergoing a critical transition-from knowledge-based instruction to competency-oriented teaching.A postgraduate student competency evaluation model can serve as a framework to organize and guide both teaching and research activities at the postgraduate level.A number of relevant research efforts have already been conducted in this area.Graduate education plays a vital role not only as a continuation and enhancement of undergraduate education but also as essential preparation for future research endeavors.An analysis of the acceptance of competency evaluation models refers to the assessment of how various stakeholders perceive the importance of different components within the model.Investigating the degree of acceptance among diverse groups-such as current undergraduate students,current postgraduate students,graduates with less than three years of work experience,and those with more than three years of work experience-can offer valuable insights for improving and optimizing postgraduate education and training practices.展开更多
Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot application...Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology.展开更多
With brick-wall solar greenhouses in Changli area as the research object,using temperature dynamic monitoring and statistical methods,the greenhouse structure suitable for promoting early cultivation of local peach tr...With brick-wall solar greenhouses in Changli area as the research object,using temperature dynamic monitoring and statistical methods,the greenhouse structure suitable for promoting early cultivation of local peach trees was selected by studying the temperature data of the solar greenhouses during the winter solstice,and a prediction model for daily average temperature was constructed.The results showed that greenhouse Ⅰ had reasonable structural parameters and good daylight during the day.However,due to the low wall thickness and poor insulation material,the minimum temperature was significantly lower than other greenhouses.The thermal insulation performance of greenhouse Ⅱ and Ⅲ was better than that of greenhouse Ⅰ,but the depth-span ratio and the front roof lighting angle were smaller.During the winter solstice,the average temperature of the three greenhouses was between 10 and 15℃,which was suitable for early cultivation of peach trees.The prediction model of daily average temperature was obtained:Daily average temperature=1.02+0.69×Daily average temperature of the previous day+0.02×Maximum temperature of the previous day-0.01×Minimum temperature of the previous day.To sum up,the structural parameters of brick-wall solar greenhouses suitable for early cultivation of peach trees in Changli area were as follows:span 6.5-8.5 m,depth-span ratio 0.47,front roof lighting angle 30°and wall thickness greater than 55 cm.展开更多
As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large lang...As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large language models(LLMs)for Salmonella resistance prediction,data presentation,and data sharing.To overcome this issue,we firstly propose a two-step feature-selection process based on the chi-square test and conditional mutual information maximization to find the key Salmonella resistance genes in a pan-genomics analysis and develop an LLM-based Salmonella antimicrobial-resistance predictive(SARPLLM)algorithm to achieve accurate antimicrobial-resistance prediction,based on Qwen2 LLM and low-rank adaptation.Secondly,we optimize the time complexity to compute the sample distance from the linear to logarithmic level by constructing a quantum data augmentation algorithm denoted as QSMOTEN.Thirdly,we build up a user-friendly Salmonella antimicrobial-resistance predictive online platform based on knowledge graphs,which not only facilitates online resistance prediction for users but also visualizes the pan-genomics analysis results of the Salmonella datasets.展开更多
To meet the extreme precision requirements of nanometer-scale semiconductor manufacturing and micrometer-level aerospace component processing,the complexity of precision manufacturing equipment design has exceeded the...To meet the extreme precision requirements of nanometer-scale semiconductor manufacturing and micrometer-level aerospace component processing,the complexity of precision manufacturing equipment design has exceeded the capabilities of traditional design methodologies.Conventional experience-driven design approaches exhibit fundamental limitations when confronting high-dimensional parameter spaces,complex multidisciplinary coupling effects,and dynamic performance prediction requirements,rendering trial-and-error iterative optimization processes inefficient and incapable of achieving optimal solutions.Intelligent design offers new pathways to overcome these limitations through the integration of artificial intelligence(AI)with traditional engineering workflows.However,the transition from theoretical concepts to manufacturing practice encounters three critical technical bottlenecks:the sparsity and heterogeneity of design data constrain the development of domain-specific large models,hallucination phenomena in generative design compromise solution trustworthiness,and numerical simulation methods face fundamental trade-offs between computational accuracy and efficiency.This paper conducts comprehensive analysis of the underlying causes of these challenges and proposes a knowledge-generation-simulation integrated intelligent design ecosystem as a development pathway.This approach achieves deep integration of large models with manufacturing domain knowledge,seamless fusion of AI with Computer-Aided Design/Computer-Aided Engineering(CAD/CAE)systems,and comprehensive synthesis of physics-based mechanisms with data-driven methods,driving the evolution of intelligent design from human-dominated iterative processes toward autonomous collaborative innovation systems,thereby providing robust support for technological breakthroughs in precision and extreme manufacturing equipment while facilitating the intelligent transformation of the manufacturing industry.展开更多
The relationship between marine transgression and the distribution of lacustrine organic matter has restricted shale oil and gas exploration for decades.In this study,the research objective is to analyze the sedimenta...The relationship between marine transgression and the distribution of lacustrine organic matter has restricted shale oil and gas exploration for decades.In this study,the research objective is to analyze the sedimentary environment and evaluate its influence on organic matter in transgressive lacustrine shale.The study uses various analyses including total organic carbon(TOC),Rock-Eval pyrolysis,gas chromatography-mass spectrometry(GC-MS),trace element and isotope analysis.Finally,the study proposes an enrichment model for organic matter.The lacustrine shale of the second member of the Funing Formation(E_(1)f^(2))is divided into three sequences.The results indicate that the depositional environment of the organic matter during this period was an arid and humid,reduced,closed,rift lake basin.In the first sequence,high salinity resulted from increased evaporation,leading to low primary biological productivity.At this time,the lake basin belonged to a salinized closed lake basin.Intermittent transgressions began in the second sequence,with the deep lake area still being dominated by a reducing environment.The third sequence saw the environment evolve into a closed lake basin characterized by a warm and humid freshwater environment with high primary productivity.Marine transgressions introduce a substantial amount of marine plankton,nutrient elements,as well as more CO_(2) and CO_(3)^(2−)into the lake,leading to increased primary productivity.The sedimentary model for transgressive lacustrine source rocks proposed here serves as an example for similar transgressive lake basins.展开更多
Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart cont...Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart contracts for personal financial gain, which undermines the integrity of the Ethereum blockchain. This paper proposes a computer program called SADA (Static and Dynamic Analyzer), a novel approach to smart contract vulnerability detection using multiple Large Language Model (LLM) agents to analyze and flag suspicious Solidity code for Ethereum smart contracts. SADA not only improves upon existing vulnerability detection methods but also paves the way for more secure smart contract development practices in the rapidly evolving blockchain ecosystem.展开更多
This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,mate...This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization.展开更多
As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from di...As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from different studies,this study constructs a refined block model(including Qilian,Alxa,Ordos,Xining,Haiyuan,and Lanzhou blocks)and uses the grid search and simulated annealing methods to invert GPS data for slip rate and locking degree of the Haiyuan fault zone.The results are as follows:(1)The sinistral slip rates in the western,middle,and eastern segments are 4.93-5.22 mm/a,1.52-4.94 mm/a,and 0.43-1.18 mm/a,decreasing eastward on the whole,while the compression rates are 0.45-1.26 mm/a,0.58-2.62 mm/a,and3.52-4.48 mm/a,increasing eastward on the whole.(2)The locking depth of the western segment increases from about 5 km to about 20 km eastward;the middle segment decreases and then increases eastward;the eastern segment concentrates at about 20 km(PHI is about 0.86).(3)The slip deficit is relatively higher in the Lenglongling,Jinqianghe,Maomaoshan,and Liupanshan faults(averaging about 3.42 mm/a,4.16 mm/a,4.23 mm/a,and 3.43 mm/a within 20 km).(4)The Qilian,Alxa,Xining,Lanzhou,and Haiyuan blocks rotate clockwise,while the Ordos block rotates counterclockwise.Additionally,by comparing different block models,the Haiyuan block should be considered independently.The Haiyuan fault zone adjusts surrounding block movements and uplifts Liupanshan mountain tectonically.The results can provide important references for understanding the regional earthquake risk and deformation mechanism.展开更多
基金supported by the National Natural Science Foundation of China(Nos.81974355 and 82172524)Key Research and Development Program of Hubei Province(No.2021BEA161)+2 种基金National Innovation Platform Development Program(No.2020021105012440)Open Project Funding of the Hubei Key Laboratory of Big Data Intelligent Analysis and Application,Hubei University(No.2024BDIAA03)Free Innovation Preliminary Research Fund of Wuhan Union Hospital(No.2024XHYN047).
文摘Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(TPFs).Methods YOLOv8n-cls was used to construct a baseline model on the data of 3781 patients from the Orthopedic Trauma Center of Wuhan Union Hospital.Additionally,a segmentation-guided classification approach was proposed.To enhance the dataset,a diffusion model was further demonstrated for data augmentation.Results The novel method that integrated the segmentation-guided classification and diffusion model augmentation sig-nificantly improved the accuracy and robustness of fracture classification.The average accuracy of classification for TPFs rose from 0.844 to 0.896.The comprehensive performance of the dual-stream model was also significantly enhanced after many rounds of training,with both the macro-area under the curve(AUC)and the micro-AUC increasing from 0.94 to 0.97.By utilizing diffusion model augmentation and segmentation map integration,the model demonstrated superior efficacy in identifying SchatzkerⅠ,achieving an accuracy of 0.880.It yielded an accuracy of 0.898 for SchatzkerⅡandⅢand 0.913 for SchatzkerⅣ;for SchatzkerⅤandⅥ,the accuracy was 0.887;and for intercondylar ridge fracture,the accuracy was 0.923.Conclusion The dual-stream attention-based classification network,which has been verified by many experiments,exhibited great potential in predicting the classification of TPFs.This method facilitates automatic TPF assessment and may assist surgeons in the rapid formulation of surgical plans.
基金sponsored by the U.S.Department of Housing and Urban Development(Grant No.NJLTS0027-22)The opinions expressed in this study are the authors alone,and do not represent the U.S.Depart-ment of HUD’s opinions.
文摘This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.
基金National Natural Science Foundation of china(No.42371446)Natural Science Foundatiorof Hubei Province(No.2024AFD412)Fundamental Research Funds for National Universities,China University of Geosciences(Wuhan)(No.2024XLA17).
文摘In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development.
基金primarily supported by the National Key R&D Program of China[grant number 2021YFC3000904]the Jiangsu Provincial Key Technology R&D Program[grant number BE2022851]National Natural Science Foundation of China[grant number 42405035]。
文摘Vector winds play a crucial role in weather and climate,as well as the effective utilization of wind energy resources.However,limited research has been conducted on treating the wind field as a vector field in the evaluation of numerical weather prediction models.In this study,the authors treat vector winds as a whole by employing a vector field evaluation method,and evaluate the mesoscale model of the China Meteorological Administration(CMA-MESO)and ECMWF forecast,with reference to ERA5 reanalysis,in terms of multiple aspects of vector winds over eastern China in 2022.The results show that the ECMWF forecast is superior to CMA-MESO in predicting the spatial distribution and intensity of 10-m vector winds.Both models overestimate the wind speed in East China,and CMA-MESO overestimates the wind speed to a greater extent.The forecasting skill of the vector wind field in both models decreases with increasing lead time.The forecasting skill of CMA-MESO fluctuates more and decreases faster than that of the ECMWF forecast.There is a significant negative correlation between the model vector wind forecasting skill and terrain height.This study provides a scientific evaluation of the local application of vector wind forecasts of the CMA-MESO model and ECMWF forecast.
基金National Key R&D Program of China(2022YFB3706901)National Natural Science Foundation of China(52274382)Key Research and Development Program of Hubei Province(2022BAA024)。
文摘The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.
基金support in dataset preparation.This study was funded by National Natural Science Foundation of China(Nos.42422704 and 52379109)Opening the fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(No.SKLGP2024K028)Science and Technology Research and Design Projects of China State Construction Engineering Corporation Ltd.(No.CSCEC-2024-Q-68).
文摘The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across diverse geological settings.Large-scale models(LSMs),with vast parameter spaces and extensive training datasets,excel in solving complex visual problems.This study explores the potential of using one such LSM,Segment anything model(SAM),to identify facet-type discontinuities across several outcrops via interactive prompting.The findings demonstrate that SAM effectively segments two-dimensional(2D)discontinuities,with its generalization capability validated on a dataset of 2426 identified discontinuities across 170 outcrops.The model achieves 0.78 mean IoU and 0.86 average precision using 11-point prompts.To extend to three dimensions(3D),a framework integrating SAM with Structure-from-Motion(SfM)was proposed.By utilizing the inherent but often overlooked relationship between image pixels and point clouds in SfM,the identification process was simplified and generalized across photogrammetric devices.Benchmark studies showed that the framework achieved 0.91 average precision,identifying 87 discontinuities in Dataset-3D.The results confirm its high precision and efficiency,making it a valuable tool for data annotation.The proposed method offers a practical solution for geological investigations.
基金supported by the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(No.GLAB 2024ZR03)the National Natural Science Foundation of China(No.42407248)+2 种基金the Guizhou Provincial Basic Research Program(Natural Science)(No.QKHJC-[2023]-YB066)the Key Laboratory of Smart Earth(No.KF2023YB04-02)the Fundamental Research Funds for the Central Universities。
文摘The constitutive model is essential for predicting the deformation and stability of rocksoil mass.The estimation of constitutive model parameters is a necessary and important task for the reliable characterization of mechanical behaviors.However,constitutive model parameters cannot be evaluated accurately with a limited amount of test data,resulting in uncertainty in the prediction of stress-strain curves.This paper proposes a Bayesian analysis framework to address this issue.It combines the Bayesian updating with the structural reliability and adaptive conditional sampling methods to assess the equation parameter of constitutive models.Based on the triaxial and ring shear tests on shear zone soils from the Huangtupo landslide,a statistical damage constitutive model and a critical state hypoplastic constitutive model were used to demonstrate the effectiveness of the proposed framework.Moreover,the parameter uncertainty effects of the damage constitutive model on landslide stability were investigated.Results show that reasonable assessments of the constitutive model parameter can be well realized.The variability of stress-strain curves is strongly related to the model prediction performance.The estimation uncertainty of constitutive model parameters should not be ignored for the landslide stability calculation.Our study provides a reference for uncertainty analysis and parameter assessment of the constitutive model.
文摘Bangladesh has a denser population in comparison with many other countries. Though the rate of population increase has been regarded as a concerning issue, estimation of the population instability in the upcoming years may be useful for national planning. To predict Bangladesh’s future population, this study compares the estimated populations of two popular population models, the Malthusian and the logistic population models, with the country’s census population published by BBS. We also tried to find out which model gives a better approximation for forecasting the past, present, and future population between these two models.
基金supported by the National Natural Science Foundation of China(Grant Nos.12020101005,12475202,12347131,and 12405289).
文摘Radio frequency capacitively coupled plasmas(RF CCPs)operated in Ar/O_(2)gas mixtures which are widely adopted in microelectronics,display,and photovoltaic industry,are investigated based on an equivalent circuit model coupled with a global model.This study focuses on the effects of singlet metastable molecule O_(2)(b^(1)∑_(8)^(+)),highly excited Herzberg states O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-)),and the negative ion O_(2)^(-),which are usually neglected in simulation studies.Specifically,their impact on particle densities,electronegativity,electron temperature,voltage drop across the sheath,and absorbed power in the discharge is analyzed.The results indicate that O_(2)(b^(1)∑_(8)^(+))and O_(2)^(-)exhibit relatively high densities in argon-oxygen discharges.While O_(2)(A^(3)∑_(u)^(+),A^(3)△_(u),c^(1)∑_(u)^(-))play a critical role in O_(2)b1S+g production,especially at higher pressure.The inclusion of these particles reduces the electronegativity,electron temperature,and key species densities,especially the O^(-)and O^(*)densities.Moreover,the sheath voltage drop,as well as the inductance and resistance of the plasma bulk are enhanced,while the sheath dissipation power and total absorbed power decrease slightly.With the increasing pressure,the influence of these particles on the discharge properties becomes more significant.The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr(1 Torr=1.33322×10^(2)Pa),offering insights into essential and non-essential reactions for future low-pressure O_(2)and Ar/O_(2)CCP discharge modeling.
基金supported by the Key R&D Program Project of Xinjiang Province(2024B01013)the National Key Research and Development Program of China(2022YFE0129800).
文摘The successful development of shale oil and gas reservoirs is the biggest technological revolution in the oil and gas industry.Its key technologies are horizontal well drilling and fracturing,which are based on understanding the mechanical properties of reservoir rocks.Therefore,it is critical to obtain the reservoir mechanical parameters quickly,efficiently,and inexpensively.In this study,shale samples were collected from three basins in Southwest China,and the elastic modulus of shale in the indentation depth range of 0-5000 nm was obtained by nanoindentation experiments.Experimental results showed that different indentation depths had different physical characteristics.The shallower depths had the mechanical properties of single minerals,while the deeper depths had the mechanical properties of a multi-mineral composite.The difference between the two represented the cementation strength between the mineral particles.The error between the calculation results of the existing equivalent medium theoretical model and experimental data reached 324%.In this study,a weak cementation model was adopted,and three parameters obtained by nanoindentation experiments were considered:the soft component volume content,intergranular cementation strength,and mineral particle size.This solved the problem of assuming rather than calculating the values of some parameters in the existing model and realized the prediction of the macroscopic mechanical parameters of shale.The calculation error was reduced to less than 20%,and the test method and calculation model can be popularized and applied in engineering.
基金Project supported by the National Natural Science Foundation of China(Grant No.51277138)the Natural Science Basic Research Program of Shaanxi Province of China(Grant No.2021JM-442)the Fund from the Shaanxi Provincial Science and Technology Department for Qin Chuangyuan Scientist+Engineer Team(Grant No.2024QCY-KXJ-194)。
文摘A novel method is introduced to optimize the traditional Skanavi model by decomposing the electric field of molecules into the electric field of ions and quantitatively describing the ionic-scale electric field by the structural coefficient of the effective electric field.Furthermore,the optimization of the Skanavi model is demonstrated and the ferroelectric phase transition of BaTiO_(3)crystals is revealed by calculating the optical and static permittivities of BaTiO_(3),CaTiO_(3),and SrTiO_(3)crystals and the structure coefficients of the effective electric field of BT crystals after Ti4+displacement.This research compensates for the deficiencies of the traditional Skanavi model and refines the theoretical framework for analyzing dielectric properties in high permittivity materials.
文摘With the rapid development of generative artificial intelligence technologies,represented by large language models,university-level computer science education is undergoing a critical transition-from knowledge-based instruction to competency-oriented teaching.A postgraduate student competency evaluation model can serve as a framework to organize and guide both teaching and research activities at the postgraduate level.A number of relevant research efforts have already been conducted in this area.Graduate education plays a vital role not only as a continuation and enhancement of undergraduate education but also as essential preparation for future research endeavors.An analysis of the acceptance of competency evaluation models refers to the assessment of how various stakeholders perceive the importance of different components within the model.Investigating the degree of acceptance among diverse groups-such as current undergraduate students,current postgraduate students,graduates with less than three years of work experience,and those with more than three years of work experience-can offer valuable insights for improving and optimizing postgraduate education and training practices.
基金supported by National Science Foundation Grant No.2123824.
文摘Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology.
基金Supported by Modern Agricultural Industry Technology System Innovation Team Construction in Hebei Province(HBCT2023130404).
文摘With brick-wall solar greenhouses in Changli area as the research object,using temperature dynamic monitoring and statistical methods,the greenhouse structure suitable for promoting early cultivation of local peach trees was selected by studying the temperature data of the solar greenhouses during the winter solstice,and a prediction model for daily average temperature was constructed.The results showed that greenhouse Ⅰ had reasonable structural parameters and good daylight during the day.However,due to the low wall thickness and poor insulation material,the minimum temperature was significantly lower than other greenhouses.The thermal insulation performance of greenhouse Ⅱ and Ⅲ was better than that of greenhouse Ⅰ,but the depth-span ratio and the front roof lighting angle were smaller.During the winter solstice,the average temperature of the three greenhouses was between 10 and 15℃,which was suitable for early cultivation of peach trees.The prediction model of daily average temperature was obtained:Daily average temperature=1.02+0.69×Daily average temperature of the previous day+0.02×Maximum temperature of the previous day-0.01×Minimum temperature of the previous day.To sum up,the structural parameters of brick-wall solar greenhouses suitable for early cultivation of peach trees in Changli area were as follows:span 6.5-8.5 m,depth-span ratio 0.47,front roof lighting angle 30°and wall thickness greater than 55 cm.
基金supported by the National Science and Technology Major Project(2021YFF1201200)the National Natural Science Foundation of China(62372316)the Sichuan Science and Technology Program key project(2024YFHZ0091).
文摘As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large language models(LLMs)for Salmonella resistance prediction,data presentation,and data sharing.To overcome this issue,we firstly propose a two-step feature-selection process based on the chi-square test and conditional mutual information maximization to find the key Salmonella resistance genes in a pan-genomics analysis and develop an LLM-based Salmonella antimicrobial-resistance predictive(SARPLLM)algorithm to achieve accurate antimicrobial-resistance prediction,based on Qwen2 LLM and low-rank adaptation.Secondly,we optimize the time complexity to compute the sample distance from the linear to logarithmic level by constructing a quantum data augmentation algorithm denoted as QSMOTEN.Thirdly,we build up a user-friendly Salmonella antimicrobial-resistance predictive online platform based on knowledge graphs,which not only facilitates online resistance prediction for users but also visualizes the pan-genomics analysis results of the Salmonella datasets.
基金supported by the National Key Research and Development Program of China(Grant No.2024YFB3309500)the National Natural Science Foundation of China(Grant Nos.U24B6005,U22A6001)。
文摘To meet the extreme precision requirements of nanometer-scale semiconductor manufacturing and micrometer-level aerospace component processing,the complexity of precision manufacturing equipment design has exceeded the capabilities of traditional design methodologies.Conventional experience-driven design approaches exhibit fundamental limitations when confronting high-dimensional parameter spaces,complex multidisciplinary coupling effects,and dynamic performance prediction requirements,rendering trial-and-error iterative optimization processes inefficient and incapable of achieving optimal solutions.Intelligent design offers new pathways to overcome these limitations through the integration of artificial intelligence(AI)with traditional engineering workflows.However,the transition from theoretical concepts to manufacturing practice encounters three critical technical bottlenecks:the sparsity and heterogeneity of design data constrain the development of domain-specific large models,hallucination phenomena in generative design compromise solution trustworthiness,and numerical simulation methods face fundamental trade-offs between computational accuracy and efficiency.This paper conducts comprehensive analysis of the underlying causes of these challenges and proposes a knowledge-generation-simulation integrated intelligent design ecosystem as a development pathway.This approach achieves deep integration of large models with manufacturing domain knowledge,seamless fusion of AI with Computer-Aided Design/Computer-Aided Engineering(CAD/CAE)systems,and comprehensive synthesis of physics-based mechanisms with data-driven methods,driving the evolution of intelligent design from human-dominated iterative processes toward autonomous collaborative innovation systems,thereby providing robust support for technological breakthroughs in precision and extreme manufacturing equipment while facilitating the intelligent transformation of the manufacturing industry.
基金financially supported by the National Natural Science Foundation of China(Grant No.42072150)and we thank the sponsors of these projects.
文摘The relationship between marine transgression and the distribution of lacustrine organic matter has restricted shale oil and gas exploration for decades.In this study,the research objective is to analyze the sedimentary environment and evaluate its influence on organic matter in transgressive lacustrine shale.The study uses various analyses including total organic carbon(TOC),Rock-Eval pyrolysis,gas chromatography-mass spectrometry(GC-MS),trace element and isotope analysis.Finally,the study proposes an enrichment model for organic matter.The lacustrine shale of the second member of the Funing Formation(E_(1)f^(2))is divided into three sequences.The results indicate that the depositional environment of the organic matter during this period was an arid and humid,reduced,closed,rift lake basin.In the first sequence,high salinity resulted from increased evaporation,leading to low primary biological productivity.At this time,the lake basin belonged to a salinized closed lake basin.Intermittent transgressions began in the second sequence,with the deep lake area still being dominated by a reducing environment.The third sequence saw the environment evolve into a closed lake basin characterized by a warm and humid freshwater environment with high primary productivity.Marine transgressions introduce a substantial amount of marine plankton,nutrient elements,as well as more CO_(2) and CO_(3)^(2−)into the lake,leading to increased primary productivity.The sedimentary model for transgressive lacustrine source rocks proposed here serves as an example for similar transgressive lake basins.
文摘Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart contracts for personal financial gain, which undermines the integrity of the Ethereum blockchain. This paper proposes a computer program called SADA (Static and Dynamic Analyzer), a novel approach to smart contract vulnerability detection using multiple Large Language Model (LLM) agents to analyze and flag suspicious Solidity code for Ethereum smart contracts. SADA not only improves upon existing vulnerability detection methods but also paves the way for more secure smart contract development practices in the rapidly evolving blockchain ecosystem.
基金supported by the Basic Public Welfare Research Program of Zhejiang Province(No.LGN22E050005).
文摘This study proposes a multi-objective optimization framework for electric winches in fiber-reinforced plastic(FRP)fishing vessels to address critical limitations of conventional designs,including excessive weight,material inefficiency,and performance redundancy.By integrating surrogate modeling techniques with a multi-objective genetic algorithm(MOGA),we have developed a systematic approach that encompasses parametric modeling,finite element analysis under extreme operational conditions,and multi-fidelity performance evaluation.Through a 10-t electric winch case study,the methodology’s effectiveness is demonstrated via parametric characterization of structural integrity,stiffness behavior,and mass distribution.The comparative analysis identified optimal surrogate models for predicting key performance metrics,which enabled the construction of a robust multi-objective optimization model.The MOGA-derived Pareto solutions produced a design configuration achieving 7.86%mass reduction,2.01%safety factor improvement,and 23.97%deformation mitigation.Verification analysis confirmed the optimization scheme’s reliability in balancing conflicting design requirements.This research establishes a generalized framework for marine deck machinery modernization,particularly addressing the structural compatibility challenges in FRP vessel retrofitting.The proposed methodology demonstrates significant potential for facilitating sustainable upgrades of fishing vessel equipment through systematic performance optimization.
基金supported by the National Natural Science Foundation of China(42474003,42074007)the Fundamental Research Funds for the Central Universities(2042023kfyq01)。
文摘As a major fault in the northeastern Qinghai-Xizang Plateau,the Haiyuan fault zone is important for understanding the regional deformation.Aiming at the differences in the slip rate and locking degree obtained from different studies,this study constructs a refined block model(including Qilian,Alxa,Ordos,Xining,Haiyuan,and Lanzhou blocks)and uses the grid search and simulated annealing methods to invert GPS data for slip rate and locking degree of the Haiyuan fault zone.The results are as follows:(1)The sinistral slip rates in the western,middle,and eastern segments are 4.93-5.22 mm/a,1.52-4.94 mm/a,and 0.43-1.18 mm/a,decreasing eastward on the whole,while the compression rates are 0.45-1.26 mm/a,0.58-2.62 mm/a,and3.52-4.48 mm/a,increasing eastward on the whole.(2)The locking depth of the western segment increases from about 5 km to about 20 km eastward;the middle segment decreases and then increases eastward;the eastern segment concentrates at about 20 km(PHI is about 0.86).(3)The slip deficit is relatively higher in the Lenglongling,Jinqianghe,Maomaoshan,and Liupanshan faults(averaging about 3.42 mm/a,4.16 mm/a,4.23 mm/a,and 3.43 mm/a within 20 km).(4)The Qilian,Alxa,Xining,Lanzhou,and Haiyuan blocks rotate clockwise,while the Ordos block rotates counterclockwise.Additionally,by comparing different block models,the Haiyuan block should be considered independently.The Haiyuan fault zone adjusts surrounding block movements and uplifts Liupanshan mountain tectonically.The results can provide important references for understanding the regional earthquake risk and deformation mechanism.