期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Three-dimensional upper bound limit analysis of underground cavities using nonlinear Baker failure criterion 被引量:7
1
作者 Zhi-zhen LIU Ping CAO +2 位作者 Hang LIN Jing-jing MENG Yi-xian WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1916-1927,共12页
A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the surrounding rock stability of underground cavities. A three-dimensional(3D) failure mode is established by e... A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the surrounding rock stability of underground cavities. A three-dimensional(3D) failure mode is established by extending the two-dimensional(2D) failure mode, which offers an upper bound expression of the surrounding rock pressure. This method is validated with a series of examples before the influence of four parameters of scale parameter, curvature parameter, shift parameter and lateral pressure coefficient, on the surrounding rock pressure is analyzed. According to these results, failure ranges of the underground cavities are determined. The following conclusions are reached:(1) the proposed approach is more accurate to predict surrounding rock pressure than the Mohr-Coulomb failure criterion;(2) the surrounding rock with large scale parameter, curvature parameter, shift parameter, and lateral pressure coefficient can lead to a more stable underground cavity;(3) the failure range in 3D mode can be predicted according to the upper bound solutions. 展开更多
关键词 Baker failure criterion underground cavity surrounding rock pressure 3D failure mode upper bound limit analysis
在线阅读 下载PDF
Study of the morphology evolution of AlN grown on nanopatterned sapphire substrate 被引量:2
2
作者 Zhuohui Wu Jianchang Yan +5 位作者 Yanan Guo Liang Zhang Yi Lu Xuecheng Wei Junxi Wang Jinmin Li 《Journal of Semiconductors》 EI CAS CSCD 2019年第12期130-134,共5页
This study focused on the evolution of growth front about AlN growth on nano-patterned sapphire substrate by metal-organic chemical vapor deposition.The substrate with concave cones was fabricated by nano-imprint lith... This study focused on the evolution of growth front about AlN growth on nano-patterned sapphire substrate by metal-organic chemical vapor deposition.The substrate with concave cones was fabricated by nano-imprint lithography and wet etching.Two samples with different epitaxy procedures were fabricated,manifesting as two-dimensional growth mode and three-dimensional growth mode,respectively.The results showed that growth temperature deeply influenced the growth modes and thus played a critical role in the coalescence of AlN.At a relatively high temperature,the AlN epilayer was progressively coalescence and the growth mode was two-dimensional.In this case,we found that the inclined semi-polar facets arising in the process of coalescence were{112^-1}type.But when decreasing the temperature,the{112^-2}semi-polar facets arose,leading to inverse pyramid morphology and obtaining the three-dimensional growth mode.The 3 D inverse pyramid AlN structure could be used for realizing 3 D semi-polar UV-LED or facet-controlled epitaxial lateral overgrowth of AlN. 展开更多
关键词 ALN epitaxial lateral overgrowth growth front evolution 2D and 3D growth modes MOCVD
在线阅读 下载PDF
Application of Optical Motion Capture Technology in Power Safety Entitative Simulation Training System
3
作者 Huimeng Zhang Lanxiang Wang +3 位作者 Shenghui Chu Shuo Chen Hao Meng Guozhong Liu 《Optics and Photonics Journal》 2016年第8期155-163,共9页
The safety production is critical to stable development of Chinese electric power industry. With the development of electric power enterprises, the requirements of its employees are also becoming higher and higher. In... The safety production is critical to stable development of Chinese electric power industry. With the development of electric power enterprises, the requirements of its employees are also becoming higher and higher. In this paper, an optical motion capture system based on the virtual reality technology is proposed to meet the requirements of the power enterprise for the qualified business ability. Electric power equipment, power equipment model entitative operating environment and the human model are established by electric power simulation unit, ZigBee technology and OpenGL graphics library. The problem of missing feature points is solved by applying the human model driven algorithm and the Kalman filtering algorithm. The experimental results show that it is more accurate to use Kalman filtering algorithm to extract the feature point in tracking process of actual motion capture and real-time animation display. The average absolute error of 3D coordinates is 1.61 mm and the average relative error is 2.23%. The system can improve trainees’ sense of experience and immersion. 展开更多
关键词 Motion Capture Kalman Filtering Power Safety Training System 3D Human Body Mode VR
在线阅读 下载PDF
Measurement, modelling, and closed-loop control of crystal shape distribution: Literature review and future perspectives 被引量:2
4
作者 Cai Y. Ma Jing J. Liu Xue Z. Wang 《Particuology》 SCIE EI CAS CSCD 2016年第3期1-18,共18页
Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too ... Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified. 展开更多
关键词 Crystal morphology Crystal shape distribution Morphological population balance mode3d process imaging Closed-loop control of crystal shapeCrystal facet growth kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部