Polarization-dependent loss(PDL)of mode-division multiplexing(MDM)links has a direct influence on the effective transmission of dual-polarization(DP)signals for large-capacity communication.In this paper,we aim to ide...Polarization-dependent loss(PDL)of mode-division multiplexing(MDM)links has a direct influence on the effective transmission of dual-polarization(DP)signals for large-capacity communication.In this paper,we aim to identify the origin of PDL in MDM systems and optimize the transmission performance of DP signals.The PDL characteristic of the fundamental MDM system with a few-mode polarization controller(FMPC)is theoretically analyzed and verified by experiments.It is shown that the PDL of MDM links arrives at the minimum when the spatial pattern of mode channels is independent of the input polarization angle.The experimental data have good consistency with the theoretical curve.At the same time,the origin of PDL for MDM systems is identified,that is,the mode dependency can be converted into the polarization dependency in the MDM links.The theoretical and experimental results in the paper can guide PDL optimization of DP signals in MDM transmission.展开更多
We propose a transfer-learning multi-input multi-output(TL-MIMO)scheme to significantly reduce the required training complexity for converging the equalizers in mode-division multiplexing(MDM)systems.Based on a built ...We propose a transfer-learning multi-input multi-output(TL-MIMO)scheme to significantly reduce the required training complexity for converging the equalizers in mode-division multiplexing(MDM)systems.Based on a built three-mode(LP01,LP11a,and LP11b)multiplexed experimental system,we thoughtfully investigate the TL-MIMO performances on the three-typed data,collecting from different sampling times,launching optical powers,and inputting optical signal-to-noise ratios(OSNRs).A dramatic reduction of approximately 40%–83.33%in the required training complexity is achieved in all three scenarios.Furthermore,the good stability of TL-MIMO in both the launched powers and OSNR test bands has also been proved.展开更多
Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the d...Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.展开更多
Mode-division multiplexing(MDM)technology enables high-bandwidth data transmission using orthogonal waveguide modes to construct parallel data streams.However,few demonstrations have been realized for generating and s...Mode-division multiplexing(MDM)technology enables high-bandwidth data transmission using orthogonal waveguide modes to construct parallel data streams.However,few demonstrations have been realized for generating and supporting high-order modes,mainly due to the intrinsic large material groupvelocity dispersion(GVD),which make it challenging to selectively couple different-order spatial modes.We show the feasibility of on-chip GVD engineering by introducing a gradient-index metamaterial structure,which enables a robust and fully scalable MDM process.We demonstrate a record-high-order MDM device that supports TE_(0)–TE_(15)modes simultaneously.40-GBaud 16-ary quadrature amplitude modulation signals encoded on 16 mode channels contribute to a 2.162 Tbit∕s net data rate,which is the highest data rate ever reported for an on-chip single-wavelength transmission.Our method can effectively expand the number of channels provided by MDM technology and promote the emerging research fields with great demand for parallelism,such as high-capacity optical interconnects,high-dimensional quantum communications,and large-scale neural networks.展开更多
Diverse spatial mode bases can be exploited in mode-division multiplexing(MDM)to sustain the capacity growth in fiber-optic communications,such as linearly polarized(LP)modes,vector modes,LP orbital angular momentum(L...Diverse spatial mode bases can be exploited in mode-division multiplexing(MDM)to sustain the capacity growth in fiber-optic communications,such as linearly polarized(LP)modes,vector modes,LP orbital angular momentum(LP-OAM)modes,and circularly polarized OAM(CP-OAM)modes.Nevertheless,which kind of mode bases is more appropriate to be utilized in fiber still remains unclear.Here,we aim to find the superior mode basis in MDM fiber-optic communications via a system-level comparison in air-core fiber(ACF).We first investigate the walk-off effect of four spatial mode bases over 1-km ACF,where LP and LP-OAM modes show intrinsic mode walk-off,while it is negligible for vector and CP-OAM modes.We then study the mode coupling effect of degenerate vector and CP-OAM modes over 1-km ACF under fiber perturbations,where degenerate even and odd vector modes suffer severe mode cross talk,while negligible for highorder degenerate CP-OAM modes based on the laws of angular momentum conservation.Moreover,we comprehensively evaluate the system-level performance for data-carrying single-channel and two-channel MDM transmission with different spatial mode bases under various kinds of fiber perturbations(bending,twisting,pressing,winding,and out-of-plane moving).The obtained results indicate that the CP-OAM mode basis shows superiority compared to other mode bases in MDM fiber-optic communications without using multiple-input multiple-output digital signal processing.Our findings may pave the way for robust shortreach MDM optical interconnects for data centers and high-performance computing.展开更多
Optical orbital angular momentum(OAM)mode multiplexing has emerged as a promising technique for boosting communication capacity.However,most existing studies have concentrated on channel(de)-multiplexing,overlooking t...Optical orbital angular momentum(OAM)mode multiplexing has emerged as a promising technique for boosting communication capacity.However,most existing studies have concentrated on channel(de)-multiplexing,overlooking the critical aspect of channel routing.This challenge involves the reallocation of multiplexed OAM modes across both spatial and temporal domains—a vital step for developing versatile communication networks.To address this gap,we introduce a novel approach based on the time evolution of OAM modes,utilizing the orthogonal conversion and diffractive modulation capabilities of unitary transformations.This approach facilitates high-dimensional orthogonal transformations of OAM mode vectors,altering both the propagation direction and the spatial location.Using Fresnel diffraction matrices as unitary operators,it manipulates the spatial locations of light beams during transmission,breaking the propagation invariance and enabling temporal evolution.As a demonstration,we have experimentally implemented the deep routing of four OAM modes within two distinct time sequences.Achieving an average diffraction efficiency above 78.31%,we have successfully deep-routed 4.69 Tbit-s^(-1)quadrature phase-shift keying(QPSK)signals carried by four multiplexed OAM channels,with a bit error rate below 10^(-6).These results underscore the efficacy of our routing strategy and its promising prospects for practical applications.展开更多
Mode-division multiplexers(MDMUXs)play a pivotal role in enabling the manipulation of an arbitrary optical state within few-mode fibers,offering extensive utility in the fields of mode-division multiplexing and struct...Mode-division multiplexers(MDMUXs)play a pivotal role in enabling the manipulation of an arbitrary optical state within few-mode fibers,offering extensive utility in the fields of mode-division multiplexing and structured optical field engineering.The exploration of MDMUXs employing cascaded resonant couplers has garnered significant attention owing to their scalability,exceptional integration capabilities,and the anticipated low insertion loss.In this work,we present the successful realization of high-quality orbital angular momentum MDMUX corresponding to topological charges 0,±1,and±2,achieved through the utilization of cascaded fused-biconical tapered couplers.Notably,the measured insertion losses at 1550 nm exhibit remarkable minimal values:0.31,0.10,and 0.64 dB,respectively.Furthermore,the 80%efficiency bandwidths exceed 106,174,and 174 nm for these respective modes.The MDMUX is composed of precisionmanufactured high-quality mode selective couplers(MSCs).Utilizing a proposed supermode propagation method based on mode composition analysis,we precisely describe the operational characteristics of MSCs.Building upon this comprehensive understanding,we embark on a pioneering analysis elucidating the influence of MSC cascading order on the performance of MDMUXs.Our theoretical investigation substantiates that when constructing MDMUXs,MSCs should adhere to a specific cascading sequence.展开更多
Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneous...Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.展开更多
We propose a mode demultiplexing hybrid(MDH) that integrates mode demultiplexing, local oscillator power splitting, and optical 90-deg mixing using multi-plane light conversion(MPLC). We demonstrate the realization of...We propose a mode demultiplexing hybrid(MDH) that integrates mode demultiplexing, local oscillator power splitting, and optical 90-deg mixing using multi-plane light conversion(MPLC). We demonstrate the realization of a three-mode MDH using four phase plates, one more than what is required for an MPLC-based mode demultiplexer, via numerical simulations. The performance of the three-mode MDH is comparable to that of commercial single-mode 90-deg hybrids. This multiple-functionality device enables simplification of the coherent optical front end of mode-division multiplexing receivers.展开更多
Miniaturized spectrometers have been widely researched in recent years,but few studies are conducted with on-chip multimode schemes for mode-division multiplexing(MDM)systems.Here we propose an ultracompact mode-divis...Miniaturized spectrometers have been widely researched in recent years,but few studies are conducted with on-chip multimode schemes for mode-division multiplexing(MDM)systems.Here we propose an ultracompact mode-division demultiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors,which realizes simultaneously spectral dispersing and light fields detecting.In the bandwidth of 1500-1600 nm,the designed spectrometer achieves the single-mode spectral resolution of 7 nm for each mode of TE_(1)-TE_(4) by Tikhonov regularization optimization.Empowered by deep learning algorithms,the 15-nm resolution of parallel reconstruction for TE_(1)-TE_(4) is achieved by a single-shot measurement.Moreover,by stacking the multimode response in TE_(1)-TE_(4) to the single spectra,the 3-nm spectral resolution is realized.This design reveals an effective solution for on-chip MDM spectroscopy,and may find applications in multimode sensing,interconnecting and processing.展开更多
This Review focuses on optical transmission fibers and the high-capacity systems operating thereon. It attempts to combine key lessons learned from the 50-year history of low-loss optical fibers with views on future f...This Review focuses on optical transmission fibers and the high-capacity systems operating thereon. It attempts to combine key lessons learned from the 50-year history of low-loss optical fibers with views on future fiber and systems requirements, discussing likely evolution paths and potential pitfalls in resolving the optical network capacity crunch.展开更多
Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,esp...Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.展开更多
The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and re...The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals.Enabling IBFD systems requires a substantial mitigation of a transmitter(Tx)’s strong self-interference(SI)signal into the receiver(Rx)channel.However,current state-ofthe-art approaches to tackle this challenge are inefficient in terms of performance,cost,and complexity,hindering the commercialization of IBFD techniques.In this work,we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and lesscomplex architecture in an all-passive module.Our scheme is based on meticulously combining polarization-division multiplexing(PDM)with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels.Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module,and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes.In addition,we propose a unique passive tunable secondary SI cancellation(SIC)mechanism,which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth.We report,solely in the analog domain,experimental isolation levels of 50,70,and 80 dB over 340,101,and 33 MHz bandwidth at the center frequency of interest,respectively,with excellent tuning capability.Furthermore,the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal.展开更多
The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional...The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional dimensions to enhance storage capabilities.We propose and implement orbital angular momentum lattice(OAML)multiplexed holography.The vortex lattice(VL)beam comprises three adjustable parameters:the rotation angle of the VL,the angle between the wave normal and the z axis,which determines the VL’s dimensions,and the topological charge.Both the rotation angle and the VL’s dimensions serve as supplementary encrypted dimensions,contributing azimuthally and radially,respectively.We investigate the mode selectivity of OAML and focus on the aforementioned parameters.Through experimental validation,we demonstrate the practical feasibility of OAML multiplexed holography across multiple dimensions.This groundbreaking development reveals new possibilities for the advancement of practical information encryption systems.展开更多
Introduction: Arbovirus diseases such as dengue and chikungunya threaten public health worldwide. Early and rapid diagnosis and surveillance of dengue virus (DENV) and chikungunya virus (CHIKV) infections are essentia...Introduction: Arbovirus diseases such as dengue and chikungunya threaten public health worldwide. Early and rapid diagnosis and surveillance of dengue virus (DENV) and chikungunya virus (CHIKV) infections are essential to the control of these diseases. In this study, we evaluate the diagnostic performance of our new in-house multiplex RT-qPCR method for detecting DENV serotypes and CHIKV in an external laboratory. Methodology: The evaluation study was conducted on 200 clinical samples of suspected patients for arbovirus disease infection, collected in Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou, Burkina Faso. Our new multiplex RT-qPCR was compared to the commercial kit, the Zika, Dengue, and Chikungunya (ZDC) Real-Time PCR Assays kit (Bio-Rad, California, USA). Results and Conclusions: Among 200 samples, 21.5% (43/200) were DENV-positive by multiplex RT-qPCR, and 21.5% (43/200) were also DENV-positive by reference real-time RT-PCR. 157 (78.5%) samples tested negative for DENV by both tests (new mRT-qPCR and reference test). The sensitivity and specificity of mRT-qPCR were 100%. The DENV serotypes detected were DENV-1 60.5% (26/43) and DENV-3 39.5% (17/43). CHIKV was not detected in this study. Our new mRT-qPCR is sensitive, cost-effective, simple, and can be used in developing country laboratories.展开更多
We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters i...We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters in graphene and F_(16)CuPc channels,separately.This process facilitates fast-switching plasticity by altering charge carriers in the separated channels.The complementary neural network for image recognition of Fashion-MNIST dataset was constructed using the matched relative amplitude and plasticity properties of the GFST dominated by holes or electrons to improve the weight regulation and recognition accuracy,achieving a pattern recognition accuracy of 83.23%.These results provide new insights to the construction of future neuromorphic systems.展开更多
Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pa...Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.展开更多
Adventitious agents,comprising unintentionally introduced microorganisms in the production of biological products,pose a significant challenge in ensuring the safety of gene therapy products.The revised International ...Adventitious agents,comprising unintentionally introduced microorganisms in the production of biological products,pose a significant challenge in ensuring the safety of gene therapy products.The revised International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use(ICH)guildline Q5A(R2)from September 2022 highlights the inclusion of viral vector-based gene therapy products in safety discussions,emphasizing controls in material sourcing,testing,and viral clearance[1].Detecting adventitious virus contamination is complex due to the unique characteristics of gene therapy products and the limitations of routine testing methods.The US Food and Drug Administration(FDA)recommends incorporating routine and specific virus detection methods,including those outlined in various pharmacopeias.Existing control methods have limitations,prompting the need for highly sensitive and broad-spectrum detection approaches.Unlike traditional biological products,gene therapy products primarily consist of live viruses,necessitating methods that distinguish between the main virus and adventitious viruses.Current virus detection techniques,such as polymerase chain reaction(PCR),sequencing,mass spectrometry,and DNA microarrays[2e4],have their drawbacks.展开更多
Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue b...Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue bioimaging and non-invasive biodetection,owing to their superior advantages including good photochemical stability,sharp emission peaks,large penetration depth,and high signal-to-noise ratio[1].Conventionally,Yb3t-and Nd3t-sensitized NCs have been utilized as NIR-II luminescent nanoprobes for in vivo bioimaging upon excitation with 980 and 808 nm diode laser,respectively[2].展开更多
The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improv...The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.展开更多
基金supported by the National Natural Science Foundation of China(No.62171078)。
文摘Polarization-dependent loss(PDL)of mode-division multiplexing(MDM)links has a direct influence on the effective transmission of dual-polarization(DP)signals for large-capacity communication.In this paper,we aim to identify the origin of PDL in MDM systems and optimize the transmission performance of DP signals.The PDL characteristic of the fundamental MDM system with a few-mode polarization controller(FMPC)is theoretically analyzed and verified by experiments.It is shown that the PDL of MDM links arrives at the minimum when the spatial pattern of mode channels is independent of the input polarization angle.The experimental data have good consistency with the theoretical curve.At the same time,the origin of PDL for MDM systems is identified,that is,the mode dependency can be converted into the polarization dependency in the MDM links.The theoretical and experimental results in the paper can guide PDL optimization of DP signals in MDM transmission.
基金supported by the National Key R&D Program of China(No.2018YFB1801001)the Royal Society International Exchange Grant(No.IEC\NSFC\211244).
文摘We propose a transfer-learning multi-input multi-output(TL-MIMO)scheme to significantly reduce the required training complexity for converging the equalizers in mode-division multiplexing(MDM)systems.Based on a built three-mode(LP01,LP11a,and LP11b)multiplexed experimental system,we thoughtfully investigate the TL-MIMO performances on the three-typed data,collecting from different sampling times,launching optical powers,and inputting optical signal-to-noise ratios(OSNRs).A dramatic reduction of approximately 40%–83.33%in the required training complexity is achieved in all three scenarios.Furthermore,the good stability of TL-MIMO in both the launched powers and OSNR test bands has also been proved.
基金supported by the National Key Research and Development Program of China(2023YFB2804704)the National Natural Science Foundation of China(12174292,12374278,and 62105250).
文摘Advancements in mode-division multiplexing(MDM)techniques,aimed at surpassing the Shannon limit and augmenting transmission capacity,have garnered significant attention in optical fiber communica-tion,propelling the demand for high-quality multiplexers and demultiplexers.However,the criteria for ideal-mode multiplexers/demultiplexers,such as performance,scalability,compatibility,and ultra-compactness,have only partially been achieved using conventional bulky devices(e.g.,waveguides,grat-ings,and free space optics)—an issue that will substantially restrict the application of MDM techniques.Here,we present a neuro-meta-router(NMR)optimized through deep learning that achieves spatial multi-mode division and supports multi-channel communication,potentially offering scalability,com-patibility,and ultra-compactness.An MDM communication system based on an NMR is theoretically designed and experimentally demonstrated to enable simultaneous and independent multi-dataset transmission,showcasing a capacity of up to 100 gigabits per second(Gbps)and a symbol error rate down to the order of 104,all achieved without any compensation technologies or correlation devices.Our work presents a paradigm that merges metasurfaces,fiber communications,and deep learning,with potential applications in intelligent metasurface-aided optical interconnection,as well as all-optical pat-tern recognition and classification.
基金supported by the National Key R&D Program of China(Grant No.2021YFB2800103)National Natural Science Foundation of China(NSFC)(Grant Nos.62105202,61835008,61860206001,61975115,62035016,and 62105200).
文摘Mode-division multiplexing(MDM)technology enables high-bandwidth data transmission using orthogonal waveguide modes to construct parallel data streams.However,few demonstrations have been realized for generating and supporting high-order modes,mainly due to the intrinsic large material groupvelocity dispersion(GVD),which make it challenging to selectively couple different-order spatial modes.We show the feasibility of on-chip GVD engineering by introducing a gradient-index metamaterial structure,which enables a robust and fully scalable MDM process.We demonstrate a record-high-order MDM device that supports TE_(0)–TE_(15)modes simultaneously.40-GBaud 16-ary quadrature amplitude modulation signals encoded on 16 mode channels contribute to a 2.162 Tbit∕s net data rate,which is the highest data rate ever reported for an on-chip single-wavelength transmission.Our method can effectively expand the number of channels provided by MDM technology and promote the emerging research fields with great demand for parallelism,such as high-capacity optical interconnects,high-dimensional quantum communications,and large-scale neural networks.
基金supported by the National Natural Science Foundation of China(Grant Nos.62125503 and 62261160388)the National Key R&D Program of China(Grant No.2019YFB2203604)+2 种基金the Key R&D Program of Hubei Province of China(Grant Nos.2020BAB001 and 2021BAA024)the Shenzhen Science and Technology Program(Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2021BG004)。
文摘Diverse spatial mode bases can be exploited in mode-division multiplexing(MDM)to sustain the capacity growth in fiber-optic communications,such as linearly polarized(LP)modes,vector modes,LP orbital angular momentum(LP-OAM)modes,and circularly polarized OAM(CP-OAM)modes.Nevertheless,which kind of mode bases is more appropriate to be utilized in fiber still remains unclear.Here,we aim to find the superior mode basis in MDM fiber-optic communications via a system-level comparison in air-core fiber(ACF).We first investigate the walk-off effect of four spatial mode bases over 1-km ACF,where LP and LP-OAM modes show intrinsic mode walk-off,while it is negligible for vector and CP-OAM modes.We then study the mode coupling effect of degenerate vector and CP-OAM modes over 1-km ACF under fiber perturbations,where degenerate even and odd vector modes suffer severe mode cross talk,while negligible for highorder degenerate CP-OAM modes based on the laws of angular momentum conservation.Moreover,we comprehensively evaluate the system-level performance for data-carrying single-channel and two-channel MDM transmission with different spatial mode bases under various kinds of fiber perturbations(bending,twisting,pressing,winding,and out-of-plane moving).The obtained results indicate that the CP-OAM mode basis shows superiority compared to other mode bases in MDM fiber-optic communications without using multiple-input multiple-output digital signal processing.Our findings may pave the way for robust shortreach MDM optical interconnects for data centers and high-performance computing.
基金the National Natural Science Foundation of China(62271322)the Guangdong Basic and Applied Basic Research Foundation(2022A1515011003 and 2023A1515030152)the Shenzhen Science and Technology Program(JCYJ20210324095610027 and JCYJ20210324095611030).
文摘Optical orbital angular momentum(OAM)mode multiplexing has emerged as a promising technique for boosting communication capacity.However,most existing studies have concentrated on channel(de)-multiplexing,overlooking the critical aspect of channel routing.This challenge involves the reallocation of multiplexed OAM modes across both spatial and temporal domains—a vital step for developing versatile communication networks.To address this gap,we introduce a novel approach based on the time evolution of OAM modes,utilizing the orthogonal conversion and diffractive modulation capabilities of unitary transformations.This approach facilitates high-dimensional orthogonal transformations of OAM mode vectors,altering both the propagation direction and the spatial location.Using Fresnel diffraction matrices as unitary operators,it manipulates the spatial locations of light beams during transmission,breaking the propagation invariance and enabling temporal evolution.As a demonstration,we have experimentally implemented the deep routing of four OAM modes within two distinct time sequences.Achieving an average diffraction efficiency above 78.31%,we have successfully deep-routed 4.69 Tbit-s^(-1)quadrature phase-shift keying(QPSK)signals carried by four multiplexed OAM channels,with a bit error rate below 10^(-6).These results underscore the efficacy of our routing strategy and its promising prospects for practical applications.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFB1801802)the National Natural Science Foundation of China (Grant Nos.62375143 and 61835006).
文摘Mode-division multiplexers(MDMUXs)play a pivotal role in enabling the manipulation of an arbitrary optical state within few-mode fibers,offering extensive utility in the fields of mode-division multiplexing and structured optical field engineering.The exploration of MDMUXs employing cascaded resonant couplers has garnered significant attention owing to their scalability,exceptional integration capabilities,and the anticipated low insertion loss.In this work,we present the successful realization of high-quality orbital angular momentum MDMUX corresponding to topological charges 0,±1,and±2,achieved through the utilization of cascaded fused-biconical tapered couplers.Notably,the measured insertion losses at 1550 nm exhibit remarkable minimal values:0.31,0.10,and 0.64 dB,respectively.Furthermore,the 80%efficiency bandwidths exceed 106,174,and 174 nm for these respective modes.The MDMUX is composed of precisionmanufactured high-quality mode selective couplers(MSCs).Utilizing a proposed supermode propagation method based on mode composition analysis,we precisely describe the operational characteristics of MSCs.Building upon this comprehensive understanding,we embark on a pioneering analysis elucidating the influence of MSC cascading order on the performance of MDMUXs.Our theoretical investigation substantiates that when constructing MDMUXs,MSCs should adhere to a specific cascading sequence.
基金jointly supported by the National Natural Science Foundation of China (U21A20495)Natural Science Foundation of Jiangsu Province (BG2024023)+1 种基金National Key Research and Development Program of China (2022YFE0112000)111 Project (D17018)。
文摘Multiple quantum well(MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing(TDM) scheme to achieve bidirectional data transmission via the same optical channel.Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets;thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network.
基金Army Research Office(ARO)(W911NF1710500,W911NF1710553)
文摘We propose a mode demultiplexing hybrid(MDH) that integrates mode demultiplexing, local oscillator power splitting, and optical 90-deg mixing using multi-plane light conversion(MPLC). We demonstrate the realization of a three-mode MDH using four phase plates, one more than what is required for an MPLC-based mode demultiplexer, via numerical simulations. The performance of the three-mode MDH is comparable to that of commercial single-mode 90-deg hybrids. This multiple-functionality device enables simplification of the coherent optical front end of mode-division multiplexing receivers.
基金supported by the National Natural Science Foundation of China(Grants No.62005231)Fundamental Research Funds for the Central Universities(20720210045,20720200074)Guangdong Basic and Applied Basic Research Foundation(2021A1515012199).
文摘Miniaturized spectrometers have been widely researched in recent years,but few studies are conducted with on-chip multimode schemes for mode-division multiplexing(MDM)systems.Here we propose an ultracompact mode-division demultiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors,which realizes simultaneously spectral dispersing and light fields detecting.In the bandwidth of 1500-1600 nm,the designed spectrometer achieves the single-mode spectral resolution of 7 nm for each mode of TE_(1)-TE_(4) by Tikhonov regularization optimization.Empowered by deep learning algorithms,the 15-nm resolution of parallel reconstruction for TE_(1)-TE_(4) is achieved by a single-shot measurement.Moreover,by stacking the multimode response in TE_(1)-TE_(4) to the single spectra,the 3-nm spectral resolution is realized.This design reveals an effective solution for on-chip MDM spectroscopy,and may find applications in multimode sensing,interconnecting and processing.
文摘This Review focuses on optical transmission fibers and the high-capacity systems operating thereon. It attempts to combine key lessons learned from the 50-year history of low-loss optical fibers with views on future fiber and systems requirements, discussing likely evolution paths and potential pitfalls in resolving the optical network capacity crunch.
基金supported by the National Natural Science Foundation of China (Grant Nos.62125503,62261160388,and 62101198)the Natural Science Foundation of Hubei Province of China (Grant Nos.2021CFB011 and 2023AFA028)+2 种基金the Key R&D Program of Hubei Province of China (Grant Nos.2020BAB001 and 2021BAA024)Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory (Grant Nos.OVL2021BG004 and OVL2023ZD004).
文摘Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.
基金supported by a Natural Sciences and Engineering Research Council(NSERC)-sponsored Industrial Research Chair program,an NSERC Discovery Grantin part by the Fonds de recherche du Québec Nature et technologies(FRQNT)Doctoral Fellowship of Amir Afshani funded by the Government of Québec Province.
文摘The in-band full-duplex(IBFD)wireless system is a promising candidate for 6G and beyond,as it can double data throughput and enormously lower transmission latency by supporting simultaneous in-band transmission and reception of signals.Enabling IBFD systems requires a substantial mitigation of a transmitter(Tx)’s strong self-interference(SI)signal into the receiver(Rx)channel.However,current state-ofthe-art approaches to tackle this challenge are inefficient in terms of performance,cost,and complexity,hindering the commercialization of IBFD techniques.In this work,we devise and demonstrate an innovative approach to realize IBFD systems that exhibit superior performance with a low-cost and lesscomplex architecture in an all-passive module.Our scheme is based on meticulously combining polarization-division multiplexing(PDM)with ferromagnetic nonreciprocity to achieve ultra-high isolation between Tx and Rx channels.Such an unprecedented conception has become feasible thanks to a concurrent dual-mode circulator—a new component introduced for the first time—as a key feature of our module,and a dual-mode waveguide that transforms two orthogonally polarized waves into two orthogonal waveguide modes.In addition,we propose a unique passive tunable secondary SI cancellation(SIC)mechanism,which is embedded within the proposed module and boosts the isolation over a relatively broad bandwidth.We report,solely in the analog domain,experimental isolation levels of 50,70,and 80 dB over 340,101,and 33 MHz bandwidth at the center frequency of interest,respectively,with excellent tuning capability.Furthermore,the module is tested in two real IBFD scenarios to assess its performance in connection with Tx-to-Rx leakage and modulation error in the presence of a Tx’s strong interference signal.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030009)the National Natural Science Foundation of China (Grant Nos.61935013,62375181,and 61975133)+1 种基金the Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Shenzhen Peacock Plan (Grant No.KQTD20170330110444030).
文摘The use of orbital angular momentum(OAM)as an independent dimension for information encryption has garnered considerable attention.However,the multiplexing capacity of OAM is limited,and there is a need for additional dimensions to enhance storage capabilities.We propose and implement orbital angular momentum lattice(OAML)multiplexed holography.The vortex lattice(VL)beam comprises three adjustable parameters:the rotation angle of the VL,the angle between the wave normal and the z axis,which determines the VL’s dimensions,and the topological charge.Both the rotation angle and the VL’s dimensions serve as supplementary encrypted dimensions,contributing azimuthally and radially,respectively.We investigate the mode selectivity of OAML and focus on the aforementioned parameters.Through experimental validation,we demonstrate the practical feasibility of OAML multiplexed holography across multiple dimensions.This groundbreaking development reveals new possibilities for the advancement of practical information encryption systems.
文摘Introduction: Arbovirus diseases such as dengue and chikungunya threaten public health worldwide. Early and rapid diagnosis and surveillance of dengue virus (DENV) and chikungunya virus (CHIKV) infections are essential to the control of these diseases. In this study, we evaluate the diagnostic performance of our new in-house multiplex RT-qPCR method for detecting DENV serotypes and CHIKV in an external laboratory. Methodology: The evaluation study was conducted on 200 clinical samples of suspected patients for arbovirus disease infection, collected in Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou, Burkina Faso. Our new multiplex RT-qPCR was compared to the commercial kit, the Zika, Dengue, and Chikungunya (ZDC) Real-Time PCR Assays kit (Bio-Rad, California, USA). Results and Conclusions: Among 200 samples, 21.5% (43/200) were DENV-positive by multiplex RT-qPCR, and 21.5% (43/200) were also DENV-positive by reference real-time RT-PCR. 157 (78.5%) samples tested negative for DENV by both tests (new mRT-qPCR and reference test). The sensitivity and specificity of mRT-qPCR were 100%. The DENV serotypes detected were DENV-1 60.5% (26/43) and DENV-3 39.5% (17/43). CHIKV was not detected in this study. Our new mRT-qPCR is sensitive, cost-effective, simple, and can be used in developing country laboratories.
基金supported by the Shenzhen Science and Technology Program(No.JCYJ20210324121002008)the National Science Fund for Distinguished Young Scholars of China(No.T2125005)+5 种基金the National Key R&D Program of China(Nos.2022YFE0198200,2022YFA1204500,and 2022YFA1204504)the Natural Science Foundation of Tianjin(Nos.22JCYBJC01290 and 23JCQNJC01440)the Key Project of Natural Science Foundation of Tianjin(No.22JCZDJC00120)the Fundamental Research Funds for the Central Universities,Nankai University(Nos.BEG124901 and BEG124401)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515110319)the Key Science and Technology Program of Henan Province(No.242102210171).
文摘We demonstrate a bipolar graphene/F_(16)CuPc synaptic transistor(GFST)with matched p-type and n-type bipolar properties,which emulates multiplexed neurotransmission of the release of two excitatory neurotransmitters in graphene and F_(16)CuPc channels,separately.This process facilitates fast-switching plasticity by altering charge carriers in the separated channels.The complementary neural network for image recognition of Fashion-MNIST dataset was constructed using the matched relative amplitude and plasticity properties of the GFST dominated by holes or electrons to improve the weight regulation and recognition accuracy,achieving a pattern recognition accuracy of 83.23%.These results provide new insights to the construction of future neuromorphic systems.
基金supported by National Key Research and Development Program of China(2022YFB2804603,2022YFB2804605)National Natural Science Foundation of China(U21B2033)+4 种基金Fundamental Research Funds forthe Central Universities(2023102001,2024202002)National Key Laborato-ry of Shock Wave and Detonation Physics(JCKYS2024212111)China Post-doctoral Science Fund(2023T160318)Open Research Fund of JiangsuKey Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_0695,SJCX25_0188)。
文摘Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.
基金financially supported by Beijing Municipal Science&Technology Commission,China(Grant No.:Z221100007922015)Youth Development Research Foundation of National Institutes for Food and Drug Control,China(Grant No.:2020B1).
文摘Adventitious agents,comprising unintentionally introduced microorganisms in the production of biological products,pose a significant challenge in ensuring the safety of gene therapy products.The revised International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use(ICH)guildline Q5A(R2)from September 2022 highlights the inclusion of viral vector-based gene therapy products in safety discussions,emphasizing controls in material sourcing,testing,and viral clearance[1].Detecting adventitious virus contamination is complex due to the unique characteristics of gene therapy products and the limitations of routine testing methods.The US Food and Drug Administration(FDA)recommends incorporating routine and specific virus detection methods,including those outlined in various pharmacopeias.Existing control methods have limitations,prompting the need for highly sensitive and broad-spectrum detection approaches.Unlike traditional biological products,gene therapy products primarily consist of live viruses,necessitating methods that distinguish between the main virus and adventitious viruses.Current virus detection techniques,such as polymerase chain reaction(PCR),sequencing,mass spectrometry,and DNA microarrays[2e4],have their drawbacks.
基金supported by the National Natural Science Foundation of China(Nos.12474418,U22A20398,and 22135008).
文摘Lanthanide(Ln^(3+))-doped luminescent nanocrystals(NCs)with excitation and emission in the second near-infrared biological window(NIRII,1000-1700 nm)have attracted considerable attention in the fields of deep-tissue bioimaging and non-invasive biodetection,owing to their superior advantages including good photochemical stability,sharp emission peaks,large penetration depth,and high signal-to-noise ratio[1].Conventionally,Yb3t-and Nd3t-sensitized NCs have been utilized as NIR-II luminescent nanoprobes for in vivo bioimaging upon excitation with 980 and 808 nm diode laser,respectively[2].
文摘The interleaving/multiplexing technique was used to realize a 200?MHz real time data acquisition system. Two 100?MHz ADC modules worked parallelly and every ADC plays out data in ping pang fashion. The design improved the system conversion rata to 200?MHz and reduced the speed of data transporting and storing to 50?MHz. The high speed HDPLD and ECL logic parts were used to control system timing and the memory address. The multi layer print board and the shield were used to decrease interference produced by the high speed circuit. The system timing was designed carefully. The interleaving/multiplexing technique could improve the system conversion rata greatly while reducing the speed of external digital interfaces greatly. The design resolved the difficulties in high speed system effectively. The experiment proved the data acquisition system is stable and accurate.