Simulation on the heating scenarios in experimental advanced superconducting tokamak (EAST) was performed by using a full wave code TORIC. The locations of resonance layers for these heating schemes are predicted an...Simulation on the heating scenarios in experimental advanced superconducting tokamak (EAST) was performed by using a full wave code TORIC. The locations of resonance layers for these heating schemes are predicted and the simulations for different schemes in ICRF experiments in EAST, for example, ion heating (both fundamental and harmonic frequency) or electron heating (by direct fast waves or by mode conversion waves), on-axis or off-axis heating, and high- field-side (HFS) launching or low-field-side (LFS) launching, etc, were conducted. For the on-axis minority ion heating of 3He in D(3He) plasma, the impacts of both density and temperature on heating were discussed in the EAST parameter ranges.展开更多
The tokamak plasma flows induced by the local radio frequency (RF) forces in the core region are analyzed. The effective components of local RF forces are composed of the momentum absorption term and the resonant pa...The tokamak plasma flows induced by the local radio frequency (RF) forces in the core region are analyzed. The effective components of local RF forces are composed of the momentum absorption term and the resonant parallel momentum transport term (i.e. the parallel component of the resonant ponderomotive forces). Different momentum balance relations are em- ployed to calculate the plasma flows depending on different assumptions of momentum transport. With the RF fields solved from RF simulation codes, the toroidal and poloidal flows by these forces under the lower hybrid current drive and the mode conversion ion cyclotron resonance heating on EAST-like plasmas are evaluated.展开更多
基金supported by National Natural Science Foundation of China (No. 10675125)
文摘Simulation on the heating scenarios in experimental advanced superconducting tokamak (EAST) was performed by using a full wave code TORIC. The locations of resonance layers for these heating schemes are predicted and the simulations for different schemes in ICRF experiments in EAST, for example, ion heating (both fundamental and harmonic frequency) or electron heating (by direct fast waves or by mode conversion waves), on-axis or off-axis heating, and high- field-side (HFS) launching or low-field-side (LFS) launching, etc, were conducted. For the on-axis minority ion heating of 3He in D(3He) plasma, the impacts of both density and temperature on heating were discussed in the EAST parameter ranges.
基金supported by National Natural Science Foundation of China(Nos.11405218,11325524,11375235 and 11261140327)in part by the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB111002,2013GB112001 and 2013GB112010)the Program of Fusion Reactor Physics and Digital Tokamak with the CAS"One-Three-Five"Strategic Planning
文摘The tokamak plasma flows induced by the local radio frequency (RF) forces in the core region are analyzed. The effective components of local RF forces are composed of the momentum absorption term and the resonant parallel momentum transport term (i.e. the parallel component of the resonant ponderomotive forces). Different momentum balance relations are em- ployed to calculate the plasma flows depending on different assumptions of momentum transport. With the RF fields solved from RF simulation codes, the toroidal and poloidal flows by these forces under the lower hybrid current drive and the mode conversion ion cyclotron resonance heating on EAST-like plasmas are evaluated.