In response to the problem of traditional methods ignoring audio modality tampering, this study aims to explore an effective deep forgery video detection technique that improves detection precision and reliability by ...In response to the problem of traditional methods ignoring audio modality tampering, this study aims to explore an effective deep forgery video detection technique that improves detection precision and reliability by fusing lip images and audio signals. The main method used is lip-audio matching detection technology based on the Siamese neural network, combined with MFCC (Mel Frequency Cepstrum Coefficient) feature extraction of band-pass filters, an improved dual-branch Siamese network structure, and a two-stream network structure design. Firstly, the video stream is preprocessed to extract lip images, and the audio stream is preprocessed to extract MFCC features. Then, these features are processed separately through the two branches of the Siamese network. Finally, the model is trained and optimized through fully connected layers and loss functions. The experimental results show that the testing accuracy of the model in this study on the LRW (Lip Reading in the Wild) dataset reaches 92.3%;the recall rate is 94.3%;the F1 score is 93.3%, significantly better than the results of CNN (Convolutional Neural Networks) and LSTM (Long Short-Term Memory) models. In the validation of multi-resolution image streams, the highest accuracy of dual-resolution image streams reaches 94%. Band-pass filters can effectively improve the signal-to-noise ratio of deep forgery video detection when processing different types of audio signals. The real-time processing performance of the model is also excellent, and it achieves an average score of up to 5 in user research. These data demonstrate that the method proposed in this study can effectively fuse visual and audio information in deep forgery video detection, accurately identify inconsistencies between video and audio, and thus verify the effectiveness of lip-audio modality fusion technology in improving detection performance.展开更多
With the development of globalization,intercultural communicative competence has become one of the core qualities of modern college students.As an important platform to cultivate students’language skills and cultural...With the development of globalization,intercultural communicative competence has become one of the core qualities of modern college students.As an important platform to cultivate students’language skills and cultural literacy,the innovation of college English teaching mode is essential.Based on this,this paper mainly discusses methods to effectively cultivate students’intercultural communicative competence in college English teaching from the perspective of multimodal interactive teaching mode,hoping to provide references for improving the quality of college English teaching and students’comprehensive quality.展开更多
A 68-years old woman presented with ahistory of recurrent fever of 38-39°ac-companied by chills and weakness over the past month.Her physical examination was unremarkable except for an audible 3/6 ejection murmur...A 68-years old woman presented with ahistory of recurrent fever of 38-39°ac-companied by chills and weakness over the past month.Her physical examination was unremarkable except for an audible 3/6 ejection murmur at the 2nd right intercostal space.Her vital signs were normal with no fever at presentation.Laboratory tests showed elevated white blood count of 11,800cells/mm3 with a remarkable neutrophilia and elevated C-reactive protein of 14 mg/dL.Blood glucose,renal and liver function tests were all normal.展开更多
Weakly aggregative modal logics (WAML) are a series of natural weakenings o the minimal modal logic K.The natural semantics for them are based on Kripke frames with an N+1-ary relation,where □φ is true at a world if...Weakly aggregative modal logics (WAML) are a series of natural weakenings o the minimal modal logic K.The natural semantics for them are based on Kripke frames with an N+1-ary relation,where □φ is true at a world iff all of its successor N-tuples has at leas one world making φ true.We study the notion of saturated models and ultrafilter extension fo this relational semantics of WAML.The Goldblatt-Thomason theorem for WAML is proved as an application.展开更多
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci...The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.展开更多
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup...Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.展开更多
Normal mode extraction has attracted extensive attention over the past few decades due to its practical value in enhancing the performance of underwater acoustic signal processing.Singular value decomposition(SVD)is a...Normal mode extraction has attracted extensive attention over the past few decades due to its practical value in enhancing the performance of underwater acoustic signal processing.Singular value decomposition(SVD)is an effective method to extract modal depth functions using vertical line arrays(VLA),particularly in scenarios when no prior environment information is available.However,the SVD method requires rigorous orthogonality conditions,and its performance severely degenerates in the presence of mode degeneracy.Consequently,the SVD approach is often not feasible in practical scenarios.This paper proposes a full rank decomposition(FRD)method to address these issues.Compared to the SVD method,the FRD method has three distinct advantages:1)the conditions that the FRD method requires are much easier to be fulfilled in practical scenarios;2)both modal depth functions and wavenumbers can be simultaneously extracted via the FRD method;3)the FRD method is not affected by the phenomenon of mode degeneracy.Numerical simulations are conducted in two types of waveguides to verify the FRD method.The impacts of environment configurations and noise levels on the precision of the extracted modal depth functions and wavenumbers are also investigated through simulation.展开更多
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ...In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).展开更多
Researchers in computer science and computer engineering devote a significant part of their efforts on communication and interaction between man and machine. Indeed, with the advent of multimedia and multimodal proces...Researchers in computer science and computer engineering devote a significant part of their efforts on communication and interaction between man and machine. Indeed, with the advent of multimedia and multimodal processing in real time, the computer is no longer considered only as a computational tool, but as a machine for processing, communication, collection and control. Many machines assist and support many activities in daily life. The main objective of this paper is to propose a new methodological solution by modeling an architecture that facilitates the work of multimodal system especially for a fission module. To realize such systems, we rely on ontology to integrate data semantically. Ontologies provide a structured vocabulary usedas support for data representation. This paper provides a better understanding of the fission system and multimodal interaction. We present our architecture and the description of the detection of optimal modalities. This is done by using an ontological model that contains different applicable scenarios and describes the environment where a multimodal system exists.展开更多
During the boreal summer,intraseasonal oscillations exhibit significant interannual variations in intensity over two key regions:the central-western equatorial Pacific(5°S-5°N,150°E-150°W)and the s...During the boreal summer,intraseasonal oscillations exhibit significant interannual variations in intensity over two key regions:the central-western equatorial Pacific(5°S-5°N,150°E-150°W)and the subtropical Northwestern Pacific(10°-20°N,130°E-175°W).The former is well-documented and considered to be influenced by the ENSO,while the latter has received comparatively less attention and is likely influenced by the Pacific Meridional Mode(PMM),as suggested by partial correlation analysis results.To elucidate the physical processes responsible for the enhanced(weakened)intraseasonal convection over the subtropical northwestern Pacific during warm(cold)PMM years,the authors employed a moisture budget analysis.The findings reveal that during warm PMM years,there is an increase in summer-mean moisture over the subtropical northwestern Pacific.This increase interacts with intensified vertical motion perturbations in the region,leading to greater vertical moisture advection in the lower troposphere and consequently resulting in convective instability.Such a process is pivotal in amplifying intraseasonal convection anomalies.The observational findings were further verified by model experiments forced by PMM-like sea surface temperature patterns.展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fibe...A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.展开更多
In modal logic,topological semantics is an intuitive and natural special case of neighbourhood semantics.This paper stems from the observation that the satisfaction relation of topological semantics applies to subset ...In modal logic,topological semantics is an intuitive and natural special case of neighbourhood semantics.This paper stems from the observation that the satisfaction relation of topological semantics applies to subset spaces which are more general than topological spaces.The minimal modal logic which is strongly sound and complete with respect to the class of subset spaces is found.Soundness and completeness results of some famous modal logics(e.g.S4,S5 and Tr)with respect to various important classes of subset spaces(eg intersection structures and complete fields of sets)are also proved.In the meantime,some known results,e.g.the soundness and completeness of Tr with respect to the class of discrete topological spaces,are proved directly using some modifications of the method of canonical mode1,without a detour via neighbourhood semantics or relational semantics.展开更多
Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical e...Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.展开更多
In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not ...In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not only stable single-pulse state, but also special mode-locked pulses with the characteristics of high energy and noisy behaviors at proper pump power and cavity polarization state. In addition, we have deeply investigated the real-time spectral evolutions of the mode-locked pulses through the dispersive Fourier transformation(DFT) technique. It can be found that the pulse regime can actually consist of a lot of small noise pulses with randomly varying intensities. We believe that these results will further enrich the nonlinear dynamical processes in the ultrafast lasers.展开更多
The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of th...The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of the diesel engine air path system,assuming that the system may simultaneously be affected by actuator faults and external random disturbances,a disturbance observer-based sliding mode controller is designed.Through the linear matrix inequality technique for solving observer and controller gains,optimal gain matrices can be obtained,eliminating the manual adjustment process of controller parameters and reducing the chattering phenomenon of the sliding mode surface.Finally,the effectiveness of the proposed method is verified through simulation analysis.展开更多
This study examined gender differences in modal choice among residents of coastal communities of Yenagoa metropolis in Bayelsa State, Nigeria. The Four-Step model of transportation planning and modal choice provided t...This study examined gender differences in modal choice among residents of coastal communities of Yenagoa metropolis in Bayelsa State, Nigeria. The Four-Step model of transportation planning and modal choice provided the theoretical basis for this study. A survey research design involving a stratified sampling technique was adopted. The descriptives on transport modes, amount and time spent revealed that 10 (76.9%) males and 3 (23.1%) females preferred bicycle as means of transportation, 7 (58.3%) males and 5 (41.7%) females preferred motorcycle, while a significant proportion 90 (53.9%) males and 77 (46.1%) females preferred tricycle, 80 (63.0%) males and 47 (37.0%) females preferred cars/taxis, and 12 (46.2%) males and 14 (53.8%) females preferred mass transit bus. However, 14 (46.7%) males and 16 (53.3%) females in marshy terrain and coastal locations preferred canoes and boats. The result of the logistic regression model revealed that gender modal preference is more likely to be influenced by mode of transportation with a beta weight of 1.140, safety considerations 1.139, ownership of transport 1.135 and distance to place of work 1.073. Hence, this study recommends that a combination of these factors should be incorporated into transport planning to achieve effective transport planning and sustainable development in the Yenagoa metropolis.展开更多
Objective: To develop a best-evidence-based optimal nutrition management plan for patients with chronic heart failure, apply it in clinical practice, and evaluate its effectiveness. Methods: Use the KTA knowledge tran...Objective: To develop a best-evidence-based optimal nutrition management plan for patients with chronic heart failure, apply it in clinical practice, and evaluate its effectiveness. Methods: Use the KTA knowledge translation model to guide evidence-based practice in nutrition management, and compare the nutritional status, cardiac function status, quality of life, and quality review indicators of chronic heart failure patients before and after the application of evidence. Results: After the application of evidence, the nutritional status indicators (MNA-SF score, albumin, hemoglobin) of two groups of heart failure patients significantly increased compared to before the application of evidence, with statistically significant differences (p Conclusion: The KTA knowledge translation model provides methodological guidance for the implementation of evidence-based practice for heart failure patients. This evidence-based practice project is beneficial for improving the outcomes of malnutrition in chronic heart failure patients and is conducive to standardizing nursing pathways, thereby promoting the improvement of nursing quality.展开更多
文摘In response to the problem of traditional methods ignoring audio modality tampering, this study aims to explore an effective deep forgery video detection technique that improves detection precision and reliability by fusing lip images and audio signals. The main method used is lip-audio matching detection technology based on the Siamese neural network, combined with MFCC (Mel Frequency Cepstrum Coefficient) feature extraction of band-pass filters, an improved dual-branch Siamese network structure, and a two-stream network structure design. Firstly, the video stream is preprocessed to extract lip images, and the audio stream is preprocessed to extract MFCC features. Then, these features are processed separately through the two branches of the Siamese network. Finally, the model is trained and optimized through fully connected layers and loss functions. The experimental results show that the testing accuracy of the model in this study on the LRW (Lip Reading in the Wild) dataset reaches 92.3%;the recall rate is 94.3%;the F1 score is 93.3%, significantly better than the results of CNN (Convolutional Neural Networks) and LSTM (Long Short-Term Memory) models. In the validation of multi-resolution image streams, the highest accuracy of dual-resolution image streams reaches 94%. Band-pass filters can effectively improve the signal-to-noise ratio of deep forgery video detection when processing different types of audio signals. The real-time processing performance of the model is also excellent, and it achieves an average score of up to 5 in user research. These data demonstrate that the method proposed in this study can effectively fuse visual and audio information in deep forgery video detection, accurately identify inconsistencies between video and audio, and thus verify the effectiveness of lip-audio modality fusion technology in improving detection performance.
文摘With the development of globalization,intercultural communicative competence has become one of the core qualities of modern college students.As an important platform to cultivate students’language skills and cultural literacy,the innovation of college English teaching mode is essential.Based on this,this paper mainly discusses methods to effectively cultivate students’intercultural communicative competence in college English teaching from the perspective of multimodal interactive teaching mode,hoping to provide references for improving the quality of college English teaching and students’comprehensive quality.
文摘A 68-years old woman presented with ahistory of recurrent fever of 38-39°ac-companied by chills and weakness over the past month.Her physical examination was unremarkable except for an audible 3/6 ejection murmur at the 2nd right intercostal space.Her vital signs were normal with no fever at presentation.Laboratory tests showed elevated white blood count of 11,800cells/mm3 with a remarkable neutrophilia and elevated C-reactive protein of 14 mg/dL.Blood glucose,renal and liver function tests were all normal.
文摘Weakly aggregative modal logics (WAML) are a series of natural weakenings o the minimal modal logic K.The natural semantics for them are based on Kripke frames with an N+1-ary relation,where □φ is true at a world iff all of its successor N-tuples has at leas one world making φ true.We study the notion of saturated models and ultrafilter extension fo this relational semantics of WAML.The Goldblatt-Thomason theorem for WAML is proved as an application.
基金the National Natural Science:Foundation of China(52375370)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University(2023-DXSSKF-Z02)+2 种基金the Nat-ural Science Foundation of Shanxi(202103021224049)GDAS Projects of International cooperation platform of Sci-ence and Technology(2022GDASZH-2022010203-003)Guangdong province Science and Technology Plan Projects(2023B1212060045).
文摘The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.
基金supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12202355,12132013,and 12172323)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.
基金supported by the National Natural Science Foundation of China(Nos.12304504,12304506 and U22 A2012)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2021023)+1 种基金the Strategy Priority Research Program(Category B)of Chinese Academy of Sciences(Nos.XDB0700100 and XDB0700000)the Natural Science Foundation of Tianjin(No.22JCYBJC00070).
文摘Normal mode extraction has attracted extensive attention over the past few decades due to its practical value in enhancing the performance of underwater acoustic signal processing.Singular value decomposition(SVD)is an effective method to extract modal depth functions using vertical line arrays(VLA),particularly in scenarios when no prior environment information is available.However,the SVD method requires rigorous orthogonality conditions,and its performance severely degenerates in the presence of mode degeneracy.Consequently,the SVD approach is often not feasible in practical scenarios.This paper proposes a full rank decomposition(FRD)method to address these issues.Compared to the SVD method,the FRD method has three distinct advantages:1)the conditions that the FRD method requires are much easier to be fulfilled in practical scenarios;2)both modal depth functions and wavenumbers can be simultaneously extracted via the FRD method;3)the FRD method is not affected by the phenomenon of mode degeneracy.Numerical simulations are conducted in two types of waveguides to verify the FRD method.The impacts of environment configurations and noise levels on the precision of the extracted modal depth functions and wavenumbers are also investigated through simulation.
基金support of the Research Project Supported by Shanxi Scholarship Council of China(2022-040)"Chunhui Plan"Collaborative Research Project by the Ministry of Education of China(HZKY20220507)+2 种基金National Natural Science Foundation of China(52104338)Applied Fundamental Research Programs of Shanxi Province(202303021221036)Shandong Postdoctoral Science Foundation(SDCX-ZG-202303027,SDBX2023054).
文摘In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).
文摘Researchers in computer science and computer engineering devote a significant part of their efforts on communication and interaction between man and machine. Indeed, with the advent of multimedia and multimodal processing in real time, the computer is no longer considered only as a computational tool, but as a machine for processing, communication, collection and control. Many machines assist and support many activities in daily life. The main objective of this paper is to propose a new methodological solution by modeling an architecture that facilitates the work of multimodal system especially for a fission module. To realize such systems, we rely on ontology to integrate data semantically. Ontologies provide a structured vocabulary usedas support for data representation. This paper provides a better understanding of the fission system and multimodal interaction. We present our architecture and the description of the detection of optimal modalities. This is done by using an ontological model that contains different applicable scenarios and describes the environment where a multimodal system exists.
基金supported by the National Natural Science Foundation of China [grant number 42088101]。
文摘During the boreal summer,intraseasonal oscillations exhibit significant interannual variations in intensity over two key regions:the central-western equatorial Pacific(5°S-5°N,150°E-150°W)and the subtropical Northwestern Pacific(10°-20°N,130°E-175°W).The former is well-documented and considered to be influenced by the ENSO,while the latter has received comparatively less attention and is likely influenced by the Pacific Meridional Mode(PMM),as suggested by partial correlation analysis results.To elucidate the physical processes responsible for the enhanced(weakened)intraseasonal convection over the subtropical northwestern Pacific during warm(cold)PMM years,the authors employed a moisture budget analysis.The findings reveal that during warm PMM years,there is an increase in summer-mean moisture over the subtropical northwestern Pacific.This increase interacts with intensified vertical motion perturbations in the region,leading to greater vertical moisture advection in the lower troposphere and consequently resulting in convective instability.Such a process is pivotal in amplifying intraseasonal convection anomalies.The observational findings were further verified by model experiments forced by PMM-like sea surface temperature patterns.
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金Supported by the Central Government Guidance on Local Science and Technology Development Funds(2023ZY1023)the Six Talent Peaks Project in Jiangsu Province(KTHY-052).
文摘A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.
基金supported by the National Social Science Fund of China(No.20CZX048)。
文摘In modal logic,topological semantics is an intuitive and natural special case of neighbourhood semantics.This paper stems from the observation that the satisfaction relation of topological semantics applies to subset spaces which are more general than topological spaces.The minimal modal logic which is strongly sound and complete with respect to the class of subset spaces is found.Soundness and completeness results of some famous modal logics(e.g.S4,S5 and Tr)with respect to various important classes of subset spaces(eg intersection structures and complete fields of sets)are also proved.In the meantime,some known results,e.g.the soundness and completeness of Tr with respect to the class of discrete topological spaces,are proved directly using some modifications of the method of canonical mode1,without a detour via neighbourhood semantics or relational semantics.
文摘Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (No.2023A1515010093)the Shenzhen Fundamental Research Program (Stable Support Plan Program)(Nos.JCYJ20220809170611004, 20231121110828001 and 20231121113641002)the National Taipei University of Technology-Shenzhen University Joint Research Program (No.2024001)。
文摘In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not only stable single-pulse state, but also special mode-locked pulses with the characteristics of high energy and noisy behaviors at proper pump power and cavity polarization state. In addition, we have deeply investigated the real-time spectral evolutions of the mode-locked pulses through the dispersive Fourier transformation(DFT) technique. It can be found that the pulse regime can actually consist of a lot of small noise pulses with randomly varying intensities. We believe that these results will further enrich the nonlinear dynamical processes in the ultrafast lasers.
基金Supported by the National Key R&D Program of China(2021YFB2011300)the National Natural Science Foundation of China(52275044,52205299)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(Z23E050032)the China Postdoctoral Science Foundation(2022M710304).
文摘The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of the diesel engine air path system,assuming that the system may simultaneously be affected by actuator faults and external random disturbances,a disturbance observer-based sliding mode controller is designed.Through the linear matrix inequality technique for solving observer and controller gains,optimal gain matrices can be obtained,eliminating the manual adjustment process of controller parameters and reducing the chattering phenomenon of the sliding mode surface.Finally,the effectiveness of the proposed method is verified through simulation analysis.
文摘This study examined gender differences in modal choice among residents of coastal communities of Yenagoa metropolis in Bayelsa State, Nigeria. The Four-Step model of transportation planning and modal choice provided the theoretical basis for this study. A survey research design involving a stratified sampling technique was adopted. The descriptives on transport modes, amount and time spent revealed that 10 (76.9%) males and 3 (23.1%) females preferred bicycle as means of transportation, 7 (58.3%) males and 5 (41.7%) females preferred motorcycle, while a significant proportion 90 (53.9%) males and 77 (46.1%) females preferred tricycle, 80 (63.0%) males and 47 (37.0%) females preferred cars/taxis, and 12 (46.2%) males and 14 (53.8%) females preferred mass transit bus. However, 14 (46.7%) males and 16 (53.3%) females in marshy terrain and coastal locations preferred canoes and boats. The result of the logistic regression model revealed that gender modal preference is more likely to be influenced by mode of transportation with a beta weight of 1.140, safety considerations 1.139, ownership of transport 1.135 and distance to place of work 1.073. Hence, this study recommends that a combination of these factors should be incorporated into transport planning to achieve effective transport planning and sustainable development in the Yenagoa metropolis.
文摘Objective: To develop a best-evidence-based optimal nutrition management plan for patients with chronic heart failure, apply it in clinical practice, and evaluate its effectiveness. Methods: Use the KTA knowledge translation model to guide evidence-based practice in nutrition management, and compare the nutritional status, cardiac function status, quality of life, and quality review indicators of chronic heart failure patients before and after the application of evidence. Results: After the application of evidence, the nutritional status indicators (MNA-SF score, albumin, hemoglobin) of two groups of heart failure patients significantly increased compared to before the application of evidence, with statistically significant differences (p Conclusion: The KTA knowledge translation model provides methodological guidance for the implementation of evidence-based practice for heart failure patients. This evidence-based practice project is beneficial for improving the outcomes of malnutrition in chronic heart failure patients and is conducive to standardizing nursing pathways, thereby promoting the improvement of nursing quality.