期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Changes of the acoustic modal phase velocity,group velocity and interference distance in an eddy
1
作者 GAO Tianfu CHEN Yaoming(Institute of Acoustics, Academia Sinica Beijing 100080) 《Chinese Journal of Acoustics》 1998年第1期1-13,共13页
Using the modal dispersion equation with the phase-integral approaches, and con-sidering an eddy (or water mass) as a sound channel disturbance, the effects of the undisturbed channel, cold-core eddy and warm-core edd... Using the modal dispersion equation with the phase-integral approaches, and con-sidering an eddy (or water mass) as a sound channel disturbance, the effects of the undisturbed channel, cold-core eddy and warm-core eddy on the acoustic propagation characteristics are dis-cussed. According to the solutions of the dispersion equation, the relation between the modal Parameters (phase velocity, group velocity and interference distance) and the eddy intensity is obtained. When the plane wave (with an incident angle a) travels toward the center of a warm-core eddy (disturbed intensity BM ) 'double channel phenomenon' will take place in case of sin2 α < BM < 2(1 - cosα), and then the modal phase velocity and interference distance will have anomalous changes which are completely different from the case of the cold-core eddy. 展开更多
关键词 Am Changes of the acoustic modal phase velocity group velocity and interference distance in an eddy
原文传递
Intensity noise as a driver for transverse mode instability in fiber amplifiers
2
作者 Christoph Stihler Cesar Jauregui +1 位作者 Sobhy E.Kholaif Jens Limpert 《PhotoniX》 SCIE EI 2020年第1期245-261,共17页
The effect of transverse mode instability (TMI) is currently the main limitation for thefurther average-power scaling of fiber laser systems with diffraction-limited beamquality. In this work a main driving force for ... The effect of transverse mode instability (TMI) is currently the main limitation for thefurther average-power scaling of fiber laser systems with diffraction-limited beamquality. In this work a main driving force for TMI in fiber amplifiers is identified. Ourexperiments and simulations illustrate that the performance of fiber laser systems interms of their diffraction-limited output power can be significantly reduced whenthe pump or seed radiation exhibit intensity noise. This finding emphasizes the factthat the TMI threshold is not only determined by the active fiber but, rather, by thewhole system. In the experiment an artificially applied pump intensity-noise of 2.9%led to a reduction of the TMI threshold of 63%, whereas a similar seed intensitynoisedecreased it by just 13%. Thus, even though both noise sources have animpact on the TMI threshold, the pump intensity-noise can be considered as themain driver for TMI in saturated fiber amplifiers. Additionally, the work unveils thatthe physical origin of this behavior is linked to the noise transfer function insaturated fiber amplifiers. With the gained knowledge and the experimental andtheoretical results, it can be concluded that a suppression of pump-noise frequenciesbelow 20 kHz could strongly increase the TMI threshold in high-power fiber lasersystems. 展开更多
关键词 Transverse mode instability Fiber lasers Thermal effects Intensity noise modal interference Refractive index grating Mode coupling Phase shift
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部