In past decades,ABX_(3) halide perovskites have attracted great interest in solar cells due to excellent opto-electronic properties,such as high carrier mobility.However,instability and toxicity are obstacles on the c...In past decades,ABX_(3) halide perovskites have attracted great interest in solar cells due to excellent opto-electronic properties,such as high carrier mobility.However,instability and toxicity are obstacles on the commercial route for perovskites.Many studies have turned to exploring A_(2) BX_(6) and A_(3) B_(2) X_(9) for better stability.Unfortunately,the carrier mobilities of these two types are inferior to ABX_(3),lower by an order of magnitude.Furthermore,the mobility of ABX_(3) is distributed over a large range of 1.78-4500 cm^(2) V^(−1) s^(−1) in experiments,which contributes to another diversity of mobilities.In this paper,we aim at reveal-ing the physical origin of the above-mentioned diversities by theoretical studies on CsBX_(3),Cs_(2) BX_(6),and Cs_(3) B_(2) X_(9)(B=Sn,Pb,Sb,Bi,X=Br,Cl).The difference in group velocities is the major reason responsible for the variation in these types.The unique three-dimensional connected conductive network of CsBX_(3) determines its large group velocity.As for carrier scattering,ionized impurity scattering dominates at low carrier and high ionized impurity concentrations.Detailed analysis reveals that band degeneracy is strongly related to the impurity scattering rate,while dielectric constant is almost immune.Our study provides a better understanding of the relationship between electronic structures and mobilities for po-tential applications in photovoltaics.展开更多
Globalization increases mobilities and multiplies identities in Asia.Singapore,a city state with diverse Asian communities,amplifies this trend.In the 1990s,Singapore recruited large numbers of Western educated Chines...Globalization increases mobilities and multiplies identities in Asia.Singapore,a city state with diverse Asian communities,amplifies this trend.In the 1990s,Singapore recruited large numbers of Western educated Chinese scholars,who formed new diasporas across Asia and became catalyst for further cultural diversities.This multifaceted Asian phenomenon can be best exemplified in Chinese scholar-director Grant Shen’s contemporary productions of the traditional Chinese opera—The West Wing(2008,2016).This study discusses issues of mobilities,identities,and diversities through The West Wing,in which the performers are predominantly from Asian diasporas.The mobility of Grant Shen from China to Singapore via the US diversifies his cultural identity,at once rooted deeply in Chinese culture while openly embracing Western liberalism and Singaporean plurality.His theatre productions,boldly adopting pop music,employing trendy language,and recreating pro-feminist scenes,vividly attest to cultural diversities.Identity issues come to the fore when this well-received play in Singapore toured Shanghai,where it was welcomed by the young but frowned upon by others as subversive to Chinese tradition.This study views the multiplicity of Singapore as a fertile land for productions foretelling the plural future Asia.展开更多
Chemical forms of Zn, Ni, Cu, and Pb in municipal sewage sludge were investigated by adding humus soil to sludge and by performing sequential extraction procedures. In the final sludge mixtures, Zn and Ni were mainly ...Chemical forms of Zn, Ni, Cu, and Pb in municipal sewage sludge were investigated by adding humus soil to sludge and by performing sequential extraction procedures. In the final sludge mixtures, Zn and Ni were mainly found in Fe/Mn oxide-bound (F3) and organic matter/sulfide-bound (F4) forms. For Zn, exchangeable (F1), carbonate-bound (F2), and F3 forms were transformed to F4 and residual forms (F5). For Ni, F1 and F2 forms were transformed to F1, F2, and F3 forms. Both Cu and Pb were strongly associated with the stable forms F4 and F5. For Cu, F2 and F3 forms were major contributors, while for Pb, F3 and F4 forms were major contributors to F5. Humus soil dosage and pH conditions in the sludge were strongly correlated with the forms of heavy metals. Five forms were used to evaluate metal mobilities in the initial and final sludge mixtures. The mobilities of the four heavy metals studied decreased after 28 days. The metal mobilities in the final sludge mixtures were ranked in the following order: Ni 〉 Zn 〉 Cu = Pb. Leaching tests showed that the mobilities of Zn and Ni in lower pH conditions (pH 4) were higher than those in higher pH conditions (pH 8).展开更多
Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero...Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.展开更多
In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) ...In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) strategy, is used as the descriptor selection and model development method. Then, the support vector machine (SVM) and multiple linear regression (MLR) model are utilized to construct the non-linear and linear quantitative structure-property relationship models. The results obtained using the SVM model are compared with those obtained using MLR reveal that the SVM model is of much better predictive value than the MLR one. The root-mean-square errors for the training set and the test set for the SVM model were 0.1911 and 0.2569, respectively, while by the MLR model, they were 0.4908 and 0.6494, respectively. The results show that the SVM model drastically enhances the ability of prediction in QSPR studies and is superior to the MLR model.展开更多
In this paper a simple method for determination of the apparent mobility of cation in a soil colloid system was described. With this method apparent mobilities of Na+, K+, and Ca2+ ions in the systems of the ferric lu...In this paper a simple method for determination of the apparent mobility of cation in a soil colloid system was described. With this method apparent mobilities of Na+, K+, and Ca2+ ions in the systems of the ferric luvisol, acrisol, and ferralsol were determined, and the reduction percentages of the mobilities were calculated. The results showed that the apparent mobilities of different cations at the same normality in a given soil system were in the order UNa> UK> UCa; those of the same cations among different soil systems were in the order ferralsol > acrisol > ferric luvisol, but the reduction percentages were in a reverse order, which among different cations at the same normality was Ca2+> K+> Na+ for ferric luvisol and acrisol systems, but was K+> Ca2+> Na+ for farralsol system. These results were interpreted in terms of different amounts of negative charge the clay fraction of different soils carries, and different mechanisms by which the soils adsorb the cations.展开更多
As potential cast and wrought Mg alloys,Mg-X(X=Al,Zn,Sn)based alloys have attracted great interest.This work is to develop a dataset of atomic mobilities that is valid over a wide composition range.With the obtained m...As potential cast and wrought Mg alloys,Mg-X(X=Al,Zn,Sn)based alloys have attracted great interest.This work is to develop a dataset of atomic mobilities that is valid over a wide composition range.With the obtained mobilities,and a compatible thermodynamic description,as well as thermophysical parameters,simulations are performed to predict the characteristics of precipitation evolution.Examples are presented for the isothermal aging processes in Mg-x wt.%Al(x=5.9,6,8.8,9),Mg-x wt.%Zn(x=6,6.2,8,8.65),Mg-x wt.%Sn(x=6.04,6.92,8.64)alloys.The simulated size distribution,number density and volume fraction of precipitates reasonably account for the experimental results and provide additional information for further alloy composition design and heat treatment optimization.展开更多
Knowledge of diffusivity is a prerequisite for understanding many scientific and technological disciplines. In this paper, firstly major experimental methods, which are employed to provide various diffusivity data, ar...Knowledge of diffusivity is a prerequisite for understanding many scientific and technological disciplines. In this paper, firstly major experimental methods, which are employed to provide various diffusivity data, are briefly described. Secondly, the fun-damentals of various computational methods, including first-principles method, embedded atomic method/molecular dynamic simulation, semi-empirical approaches, and phenomenological DICTRA technique, are demonstrated. Diffusion models re- cently developed for order/disorder transitions and stoichiometric compounds are also briefly depicted. Thirdly, a newly estab- lished diffusivity database for liquid, fcc_A1, Lie, bcc_A2, bcc_B2, and interrnetallic phases in the multicomponent A1 alloys is presented via a few case studies in binary, ternary and quaternary systems. And the integration of various computational techniques and experimental methods is highlighted. The reliability of this diffusivity database is validated by comparing the calculated and measured concentration profiles, diffusion paths, and Kirkendall shifts in various binary, ternary and quaternary diffusion couples. Next, the established diffusivity databases along with thermodynamic and other thermo-physical properties are utilized to simulate the microstructural evolution for Al alloys during solidification, interdiffusion and precipitation. A spe- cial discussion is presented on the phase-field simulation of interdiffusion microstructures in a series of Ni-Al diffusion couples composed of γ, γ', and β phases under the effects of both coherent strain and external compressive force. Future orientations in the establishment of next generation of diffusivity database are finally addressed.展开更多
Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this se...Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this semiconductor, Marcus electron transfer theory and the embedded model, which can give small intramolecular reorganization energies, were employed. The calculated results were in good agreement with the experimental values, so the above computing model is appropriate to assess the electrical property of TTF. On this basis, we predicted the charge mobility of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) crystals, for which the molecular structure is similar to TTF. The calculated results indicated that BDH-TTP is a p-type material, which has a better performance than TTF in hole transfer due to larger hole coupling and the smaller hole injection barrier. In addition, the direct coupling (DC) and the site energy correction (SEC) methods were used to calculate the charge transfer integrals. Although the results were slightly different, the qualitative trends were the same. Furthermore we took into account the anisotropic transfer properties of TTF and BDH-TTF, since obviously the mobilities along one dimension are larger than those along three dimensions. Finally, natural bond orbital analysis was used to study the interactions in all of the dimers.展开更多
The utilization and storage of CO_(2) emissions from oil production and consumption in the upstream oil industry will contribute to sustainable development.CO_(2) flooding is the key technology for the upstream oil in...The utilization and storage of CO_(2) emissions from oil production and consumption in the upstream oil industry will contribute to sustainable development.CO_(2) flooding is the key technology for the upstream oil industry to transition to sustainable development.However,there is a significant challenge in achieving high recovery and storage efficiency in unconventional reservoirs,particularly in underde-veloped countries.Numerous studies have indicated that the limited sweep range caused by premature gas channeling of CO_(2) is a crucial bottleneck that hinders the enhancement of recovery,storage efficiency and safety.This review provides a comprehensive summary of the research and technical advancements regarding the front sweep characteristics of CO_(2) during migration.It particularly focuses on the char-acteristics,applicable stages,and research progress of different technologies used for regulating CO_(2) flooding sweep.Finally,based on the current application status and development trends,the review offers insights into the future research direction for these technologies.It is concluded that the front migration characteristics of CO_(2) play a crucial role in determining the macroscopic sweep range.The focus of future research lies in achieving cross-scale correlation and information coupling of CO_(2) migration processes.Currently,the influence weight of permeability,injection speed,pressure and other parameters on the characteristics of‘fingering-gas channeling’is still not well clear.There is an urgent need to establish prediction model and early warning mechanism that considers multi-parameters and cross-scale gas channeling degrees,in order to create effective strategies for prevention and control.There are currently three technologies available for sweep regulation:flow field intervention,mobility reduction,and gas channeling plugging.To expand the sweep effectively,it is important to systematically integrate these technologies based on their regulation characteristics and applicable stages.This can be achieved by constructing an intelligent synergistic hierarchical segmented regulation technology known as‘flow field intervention+mobility regulation+channel plugging chemically’.This work is expected to provide valuable insights for achieving conformance control of CO_(2)-EOR and safe storage of CO_(2).展开更多
Building anion-derived solid electrolyte interphase(SEI)with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries(LMBs).Herein,we d...Building anion-derived solid electrolyte interphase(SEI)with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries(LMBs).Herein,we discover that,instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide(TFSI-)for inducing a LiF-rich SEI,the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface.To demonstrate this,a single-layer graphdiyne on MXene(sGDY@MXene)heterostructure has been successfully fabricated and integrated into polypropylene separators.It is found that the adsorbed Li ions connect electron-donating sGDY@MXene to TFSI-,facilitating interfacial charge transfer for TFSI-decomposition.However,this does not capture the entire picture.The sGDY@MXene also renders the adsorbed Li ions with high mobility,enabling them to reach optimal reaction sites and expedite their coordination processes with O on O=S=O and F on the broken–CF_3~-,facilitating bond cleavage.In contrast,immobilized Li ions on the more lithiophilic pristine MXene retard these cleavage processes.Consequently,the decomposition reaction is accelerated on sGDY@MXene.This work highlights the dedicate balance between lithiophilicity and Li-ion mobility in effectively promoting a LiF-rich SEI for the long-term stability of LMBs.展开更多
Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the m...Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and ...The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and fluid mobility due to the influences of the northeast and northwest dual provenance systems.This study performed multiple experimental analyses on nine samples from the area to determine the petrological and petrophysical properties,as well as the PTS characteristics of reservoirs in different provenance-controlled regions.On this basis,the pore-throat size distribution(PSD)obtained from high-pressure mercury injection(HPMI)was utilized to convert the NMR movable fluid T2spectrum,allowing for quantitative characterization of the full PSD and the occurrence characteristics of movable fluids.A systematic analysis was conducted on the primary controlling factors affecting fluid mobility in the reservoir.The results indicated that the lithology in the eastern and western regions is lithic arkose.The eastern sandstones,being farther from the provenance,exhibit higher contents of feldspar and lithic fragments,along with the development of more dissolution pores.The reservoir possesses good petrophysical properties,low displacement pressure,and high pore-throat connectivity and homogeneity,indicating strong fluid mobility.In contrast,the western sandstones,being nearer to the provenance,exhibit poor grain sorting,high contents of lithic fragments,strong compaction and cementation effects,resulting in poor petrophysical properties,and strong pore-throat heterogeneity,revealing weak fluid mobility.The range of full PSD in the eastern reservoir is wider than that in the western reservoir,with relatively well-developed macropores.The macropores are the primary space for occurrence of movable fluids,and controls the fluid mobility of the reservoir.The effective porosity of movable fluids(EPMF)quantitatively represents the pore space occupied by movable fluids within the reservoir and correlates well with porosity,permeability,and PTS parameters,making it a valuable parameter for evaluating fluid mobility.Under the multi-provenance system,the eastern and western reservoirs underwent different sedimentation and diagenesis processes,resulting in differential distribution of reservoir mineral components and pore types,which in turn affects the PTS heterogeneity and reservoir quality.The composition and content of reservoir minerals are intrinsic factors influencing fluid mobility,while the microscopic PTS is the primary factor controlling it.Low clay mineral content,welldeveloped macropores,and weak pore-throat heterogeneity all contribute to the storage and seepage of reservoir fluids.展开更多
Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the ...Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.展开更多
The successful control of hydrocarbon and CO emissions from low-temperature diesel exhausts requires the use of highly active co-oxidation catalysts.In this study,Sn was used to enhance the catalytic performance of Pd...The successful control of hydrocarbon and CO emissions from low-temperature diesel exhausts requires the use of highly active co-oxidation catalysts.In this study,Sn was used to enhance the catalytic performance of Pd/CeO_(2)in CO and C_(3)H_(6)co-oxidation conditions.CeO_(2)with added stannum(Sn)was prepared as a support using the co-precipitation method,and Pd was loaded onto the support using the impregnation method.After Sn addition(the optimal Ce/Sn ratio is 0.75:0.25),the T_(50)values of CO and C_(3)H_(6)are reduced by 20 and 32℃,respectively.A series of characterization methods indicates that the addition of Sn to the support greatly enhances its lattice oxygen mobility and increases the proportion of PdO.During the co-oxidation process,stronger lattice oxygen mobility allows CO to react faster through the Mars-van Krevelen mechanism,weakening the competition with C_(3)H_(6)for O_(2).A higher PdO content enhances the C_(3)H_(6)oxidation capability.Moreover,CO can more readily reduce PdO than Pd^(2+)in solid solution with the support,which consequently further enhances co-oxidation activity.Therefore,the addition of Sn is a simple and effective strategy for enhancing the performance of Pd/CeO_(2)catalysts in CO and C_(3)H_(6)co-oxidation reactions.Furthermore,the promotional effect of CO achieved in this study contributes to a deeper understanding of the interactions that occur during the co-oxidation of C_(3)H_(6)and CO.展开更多
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are train...In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFB3502200)the National Natural Science Foundation of China(Nos.52172216 and 92163212)+1 种基金support from the Shanghai Engi-neering Research Center for Integrated Circuits and Advanced Dis-play Materialssupported by Shanghai Techni-cal Service Center of Science and Engineering Computing,Shanghai University and Hefei Advanced Computing Center.
文摘In past decades,ABX_(3) halide perovskites have attracted great interest in solar cells due to excellent opto-electronic properties,such as high carrier mobility.However,instability and toxicity are obstacles on the commercial route for perovskites.Many studies have turned to exploring A_(2) BX_(6) and A_(3) B_(2) X_(9) for better stability.Unfortunately,the carrier mobilities of these two types are inferior to ABX_(3),lower by an order of magnitude.Furthermore,the mobility of ABX_(3) is distributed over a large range of 1.78-4500 cm^(2) V^(−1) s^(−1) in experiments,which contributes to another diversity of mobilities.In this paper,we aim at reveal-ing the physical origin of the above-mentioned diversities by theoretical studies on CsBX_(3),Cs_(2) BX_(6),and Cs_(3) B_(2) X_(9)(B=Sn,Pb,Sb,Bi,X=Br,Cl).The difference in group velocities is the major reason responsible for the variation in these types.The unique three-dimensional connected conductive network of CsBX_(3) determines its large group velocity.As for carrier scattering,ionized impurity scattering dominates at low carrier and high ionized impurity concentrations.Detailed analysis reveals that band degeneracy is strongly related to the impurity scattering rate,while dielectric constant is almost immune.Our study provides a better understanding of the relationship between electronic structures and mobilities for po-tential applications in photovoltaics.
文摘Globalization increases mobilities and multiplies identities in Asia.Singapore,a city state with diverse Asian communities,amplifies this trend.In the 1990s,Singapore recruited large numbers of Western educated Chinese scholars,who formed new diasporas across Asia and became catalyst for further cultural diversities.This multifaceted Asian phenomenon can be best exemplified in Chinese scholar-director Grant Shen’s contemporary productions of the traditional Chinese opera—The West Wing(2008,2016).This study discusses issues of mobilities,identities,and diversities through The West Wing,in which the performers are predominantly from Asian diasporas.The mobility of Grant Shen from China to Singapore via the US diversifies his cultural identity,at once rooted deeply in Chinese culture while openly embracing Western liberalism and Singaporean plurality.His theatre productions,boldly adopting pop music,employing trendy language,and recreating pro-feminist scenes,vividly attest to cultural diversities.Identity issues come to the fore when this well-received play in Singapore toured Shanghai,where it was welcomed by the young but frowned upon by others as subversive to Chinese tradition.This study views the multiplicity of Singapore as a fertile land for productions foretelling the plural future Asia.
基金supported by the Foundation of International Cooperation and Science of Shanghai(No.062307039)
文摘Chemical forms of Zn, Ni, Cu, and Pb in municipal sewage sludge were investigated by adding humus soil to sludge and by performing sequential extraction procedures. In the final sludge mixtures, Zn and Ni were mainly found in Fe/Mn oxide-bound (F3) and organic matter/sulfide-bound (F4) forms. For Zn, exchangeable (F1), carbonate-bound (F2), and F3 forms were transformed to F4 and residual forms (F5). For Ni, F1 and F2 forms were transformed to F1, F2, and F3 forms. Both Cu and Pb were strongly associated with the stable forms F4 and F5. For Cu, F2 and F3 forms were major contributors, while for Pb, F3 and F4 forms were major contributors to F5. Humus soil dosage and pH conditions in the sludge were strongly correlated with the forms of heavy metals. Five forms were used to evaluate metal mobilities in the initial and final sludge mixtures. The mobilities of the four heavy metals studied decreased after 28 days. The metal mobilities in the final sludge mixtures were ranked in the following order: Ni 〉 Zn 〉 Cu = Pb. Leaching tests showed that the mobilities of Zn and Ni in lower pH conditions (pH 4) were higher than those in higher pH conditions (pH 8).
基金funded by Australian Research Council discovery project DP140103041Future Fellowship FT160100205
文摘Two-dimensional(2D) materials have attracted extensive interest due to their excellent electrical, thermal,mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide(TMDC), another kind of 2D material,has a nonzero direct band gap(same charge carrier momentum in valence and conduction band) at monolayer state,promising for the efficient switching devices(e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2DTMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.
文摘In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) strategy, is used as the descriptor selection and model development method. Then, the support vector machine (SVM) and multiple linear regression (MLR) model are utilized to construct the non-linear and linear quantitative structure-property relationship models. The results obtained using the SVM model are compared with those obtained using MLR reveal that the SVM model is of much better predictive value than the MLR one. The root-mean-square errors for the training set and the test set for the SVM model were 0.1911 and 0.2569, respectively, while by the MLR model, they were 0.4908 and 0.6494, respectively. The results show that the SVM model drastically enhances the ability of prediction in QSPR studies and is superior to the MLR model.
文摘In this paper a simple method for determination of the apparent mobility of cation in a soil colloid system was described. With this method apparent mobilities of Na+, K+, and Ca2+ ions in the systems of the ferric luvisol, acrisol, and ferralsol were determined, and the reduction percentages of the mobilities were calculated. The results showed that the apparent mobilities of different cations at the same normality in a given soil system were in the order UNa> UK> UCa; those of the same cations among different soil systems were in the order ferralsol > acrisol > ferric luvisol, but the reduction percentages were in a reverse order, which among different cations at the same normality was Ca2+> K+> Na+ for ferric luvisol and acrisol systems, but was K+> Ca2+> Na+ for farralsol system. These results were interpreted in terms of different amounts of negative charge the clay fraction of different soils carries, and different mechanisms by which the soils adsorb the cations.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202)the Innovation Foundation for Postgraduate and Fundamental Research Funds of Central South University(No.1053320182102)China Scholarship Council(No.201906370116)for the award of a fellowship and funding。
文摘As potential cast and wrought Mg alloys,Mg-X(X=Al,Zn,Sn)based alloys have attracted great interest.This work is to develop a dataset of atomic mobilities that is valid over a wide composition range.With the obtained mobilities,and a compatible thermodynamic description,as well as thermophysical parameters,simulations are performed to predict the characteristics of precipitation evolution.Examples are presented for the isothermal aging processes in Mg-x wt.%Al(x=5.9,6,8.8,9),Mg-x wt.%Zn(x=6,6.2,8,8.65),Mg-x wt.%Sn(x=6.04,6.92,8.64)alloys.The simulated size distribution,number density and volume fraction of precipitates reasonably account for the experimental results and provide additional information for further alloy composition design and heat treatment optimization.
基金supported by the National Basic Research Program of China (Grant No. 2011CB610401)the Creative Research Group of the National Natural Science Foundation of China (Grant No. 51021063)+1 种基金the National Natural Science Foundation of China (Grant No. 50831007)the Science Center for Phase Diagrams & Materials Design and Manu-facture, Central South University
文摘Knowledge of diffusivity is a prerequisite for understanding many scientific and technological disciplines. In this paper, firstly major experimental methods, which are employed to provide various diffusivity data, are briefly described. Secondly, the fun-damentals of various computational methods, including first-principles method, embedded atomic method/molecular dynamic simulation, semi-empirical approaches, and phenomenological DICTRA technique, are demonstrated. Diffusion models re- cently developed for order/disorder transitions and stoichiometric compounds are also briefly depicted. Thirdly, a newly estab- lished diffusivity database for liquid, fcc_A1, Lie, bcc_A2, bcc_B2, and interrnetallic phases in the multicomponent A1 alloys is presented via a few case studies in binary, ternary and quaternary systems. And the integration of various computational techniques and experimental methods is highlighted. The reliability of this diffusivity database is validated by comparing the calculated and measured concentration profiles, diffusion paths, and Kirkendall shifts in various binary, ternary and quaternary diffusion couples. Next, the established diffusivity databases along with thermodynamic and other thermo-physical properties are utilized to simulate the microstructural evolution for Al alloys during solidification, interdiffusion and precipitation. A spe- cial discussion is presented on the phase-field simulation of interdiffusion microstructures in a series of Ni-Al diffusion couples composed of γ, γ', and β phases under the effects of both coherent strain and external compressive force. Future orientations in the establishment of next generation of diffusivity database are finally addressed.
基金supported by the Key Laboratory for New Molecule Material DesignFunction of Tianshui Normal University+3 种基金the Scientific Research Projects of Middle-agedYoung Researchers in Tianshui Normal University (TSA1116)the National Natural Science Foundation of China (21071110)the Fund of the Educational Commission of Gansu Province (1108-03)
文摘Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this semiconductor, Marcus electron transfer theory and the embedded model, which can give small intramolecular reorganization energies, were employed. The calculated results were in good agreement with the experimental values, so the above computing model is appropriate to assess the electrical property of TTF. On this basis, we predicted the charge mobility of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) crystals, for which the molecular structure is similar to TTF. The calculated results indicated that BDH-TTP is a p-type material, which has a better performance than TTF in hole transfer due to larger hole coupling and the smaller hole injection barrier. In addition, the direct coupling (DC) and the site energy correction (SEC) methods were used to calculate the charge transfer integrals. Although the results were slightly different, the qualitative trends were the same. Furthermore we took into account the anisotropic transfer properties of TTF and BDH-TTF, since obviously the mobilities along one dimension are larger than those along three dimensions. Finally, natural bond orbital analysis was used to study the interactions in all of the dimers.
基金National Key Research and Development Program of China(No.2023YFB4104204)National Natural Science Foundation of China(No.U23B2090).
文摘The utilization and storage of CO_(2) emissions from oil production and consumption in the upstream oil industry will contribute to sustainable development.CO_(2) flooding is the key technology for the upstream oil industry to transition to sustainable development.However,there is a significant challenge in achieving high recovery and storage efficiency in unconventional reservoirs,particularly in underde-veloped countries.Numerous studies have indicated that the limited sweep range caused by premature gas channeling of CO_(2) is a crucial bottleneck that hinders the enhancement of recovery,storage efficiency and safety.This review provides a comprehensive summary of the research and technical advancements regarding the front sweep characteristics of CO_(2) during migration.It particularly focuses on the char-acteristics,applicable stages,and research progress of different technologies used for regulating CO_(2) flooding sweep.Finally,based on the current application status and development trends,the review offers insights into the future research direction for these technologies.It is concluded that the front migration characteristics of CO_(2) play a crucial role in determining the macroscopic sweep range.The focus of future research lies in achieving cross-scale correlation and information coupling of CO_(2) migration processes.Currently,the influence weight of permeability,injection speed,pressure and other parameters on the characteristics of‘fingering-gas channeling’is still not well clear.There is an urgent need to establish prediction model and early warning mechanism that considers multi-parameters and cross-scale gas channeling degrees,in order to create effective strategies for prevention and control.There are currently three technologies available for sweep regulation:flow field intervention,mobility reduction,and gas channeling plugging.To expand the sweep effectively,it is important to systematically integrate these technologies based on their regulation characteristics and applicable stages.This can be achieved by constructing an intelligent synergistic hierarchical segmented regulation technology known as‘flow field intervention+mobility regulation+channel plugging chemically’.This work is expected to provide valuable insights for achieving conformance control of CO_(2)-EOR and safe storage of CO_(2).
基金the financial support from the National Natural Science Foundation of China(Nos.52272242,52174387,and 52403339)Key Research and Development Program of Henan Province(No.231111240600)。
文摘Building anion-derived solid electrolyte interphase(SEI)with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries(LMBs).Herein,we discover that,instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide(TFSI-)for inducing a LiF-rich SEI,the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface.To demonstrate this,a single-layer graphdiyne on MXene(sGDY@MXene)heterostructure has been successfully fabricated and integrated into polypropylene separators.It is found that the adsorbed Li ions connect electron-donating sGDY@MXene to TFSI-,facilitating interfacial charge transfer for TFSI-decomposition.However,this does not capture the entire picture.The sGDY@MXene also renders the adsorbed Li ions with high mobility,enabling them to reach optimal reaction sites and expedite their coordination processes with O on O=S=O and F on the broken–CF_3~-,facilitating bond cleavage.In contrast,immobilized Li ions on the more lithiophilic pristine MXene retard these cleavage processes.Consequently,the decomposition reaction is accelerated on sGDY@MXene.This work highlights the dedicate balance between lithiophilicity and Li-ion mobility in effectively promoting a LiF-rich SEI for the long-term stability of LMBs.
文摘Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
文摘The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and fluid mobility due to the influences of the northeast and northwest dual provenance systems.This study performed multiple experimental analyses on nine samples from the area to determine the petrological and petrophysical properties,as well as the PTS characteristics of reservoirs in different provenance-controlled regions.On this basis,the pore-throat size distribution(PSD)obtained from high-pressure mercury injection(HPMI)was utilized to convert the NMR movable fluid T2spectrum,allowing for quantitative characterization of the full PSD and the occurrence characteristics of movable fluids.A systematic analysis was conducted on the primary controlling factors affecting fluid mobility in the reservoir.The results indicated that the lithology in the eastern and western regions is lithic arkose.The eastern sandstones,being farther from the provenance,exhibit higher contents of feldspar and lithic fragments,along with the development of more dissolution pores.The reservoir possesses good petrophysical properties,low displacement pressure,and high pore-throat connectivity and homogeneity,indicating strong fluid mobility.In contrast,the western sandstones,being nearer to the provenance,exhibit poor grain sorting,high contents of lithic fragments,strong compaction and cementation effects,resulting in poor petrophysical properties,and strong pore-throat heterogeneity,revealing weak fluid mobility.The range of full PSD in the eastern reservoir is wider than that in the western reservoir,with relatively well-developed macropores.The macropores are the primary space for occurrence of movable fluids,and controls the fluid mobility of the reservoir.The effective porosity of movable fluids(EPMF)quantitatively represents the pore space occupied by movable fluids within the reservoir and correlates well with porosity,permeability,and PTS parameters,making it a valuable parameter for evaluating fluid mobility.Under the multi-provenance system,the eastern and western reservoirs underwent different sedimentation and diagenesis processes,resulting in differential distribution of reservoir mineral components and pore types,which in turn affects the PTS heterogeneity and reservoir quality.The composition and content of reservoir minerals are intrinsic factors influencing fluid mobility,while the microscopic PTS is the primary factor controlling it.Low clay mineral content,welldeveloped macropores,and weak pore-throat heterogeneity all contribute to the storage and seepage of reservoir fluids.
基金Supported by Leading Talent Program of Autonomous Region(2022TSYCLJ0070)PetroChina Prospective and Basic Technological Project(2021DJ0108)Natural Science Foundation for Outstanding Young People in Shandong Province(ZR2022YQ30).
文摘Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.
基金Project supported by the National Key R&D Program of China(2022YFC3701804)the National Natural Science Foundation of China(52225004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23010201)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2022309)。
文摘The successful control of hydrocarbon and CO emissions from low-temperature diesel exhausts requires the use of highly active co-oxidation catalysts.In this study,Sn was used to enhance the catalytic performance of Pd/CeO_(2)in CO and C_(3)H_(6)co-oxidation conditions.CeO_(2)with added stannum(Sn)was prepared as a support using the co-precipitation method,and Pd was loaded onto the support using the impregnation method.After Sn addition(the optimal Ce/Sn ratio is 0.75:0.25),the T_(50)values of CO and C_(3)H_(6)are reduced by 20 and 32℃,respectively.A series of characterization methods indicates that the addition of Sn to the support greatly enhances its lattice oxygen mobility and increases the proportion of PdO.During the co-oxidation process,stronger lattice oxygen mobility allows CO to react faster through the Mars-van Krevelen mechanism,weakening the competition with C_(3)H_(6)for O_(2).A higher PdO content enhances the C_(3)H_(6)oxidation capability.Moreover,CO can more readily reduce PdO than Pd^(2+)in solid solution with the support,which consequently further enhances co-oxidation activity.Therefore,the addition of Sn is a simple and effective strategy for enhancing the performance of Pd/CeO_(2)catalysts in CO and C_(3)H_(6)co-oxidation reactions.Furthermore,the promotional effect of CO achieved in this study contributes to a deeper understanding of the interactions that occur during the co-oxidation of C_(3)H_(6)and CO.
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
基金Supported by the National Natural Science Foundation of China(62201293,62034003)the Open-Foundation of State Key Laboratory of Millimeter-Waves(K202313)the Jiangsu Province Youth Science and Technology Talent Support Project(JSTJ-2024-040)。
文摘In this paper,the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor(InP HEMT)based on the Transformer neural network model is investigated.The AC S-parameters of the HEMT device are trained and validated using the Transformer model.In the proposed model,the eight-layer transformer encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention layer and the feed-forward neural network layer.The experimental results show that the measured and modeled S-parameters of the HEMT device match well in the frequency range of 0.5-40 GHz,with the errors versus frequency less than 1%.Compared with other models,good accuracy can be achieved to verify the effectiveness of the proposed model.